Skip to main content
Log in

Global Existence of Solutions of the Semiclassical Einstein Equation for Cosmological Spacetimes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the solutions of the semiclassical Einstein equation in flat cosmological spacetimes driven by a massive conformally coupled scalar field. In particular, we show that it is possible to give initial conditions at finite time to get a state for the quantum field which gives finite expectation values for the stress–energy tensor. Furthermore, it is possible to control this expectation value by means of a global estimate on regular cosmological spacetimes. The obtained estimates permit writing a theorem about the existence and uniqueness of the local solutions encompassing both the spacetime metric and the matter field simultaneously. Finally, we show that one can always extend local solutions up to a point where the scale factor a becomes singular or the Hubble function H reaches a critical value H c = 180π/G, both of which correspond to a divergence of the scalar curvature R, namely a spacetime singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson P.R.: Effects of quantum fields on singularities and particle horizons in the early universe. Phys. Rev. D28, 271–285 (1983)

    ADS  Google Scholar 

  2. Anderson P.R.: Effects of quantum fields on singularities and particle horizons in the early universe. II. Phys. Rev. D29, 615–627 (1984)

    ADS  Google Scholar 

  3. Anderson P.R.: Effects of quantum fields on singularities and particle horizons in the early universe. III. The conformally coupled massive scalar field. Phys. Rev. D32, 1302–1315 (1985)

    ADS  Google Scholar 

  4. Anderson P.R.: Effects of quantum fields on singularities and particle horizons in the early universe. IV. Initially empty universes. Phys. Rev. D33, 1567–1575 (1986)

    ADS  Google Scholar 

  5. Ashtekar, A., Pretorius, F., Ramazanoglu, F.M.: Surprises in the Evaporation of 2-Dimensional Black Holes. Physical Review Letters 106, 161303 (2011). arXiv:1011.6442 [gr-qc]

  6. Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorentzian manifolds and quantization. In: ESI Lectures in Mathematical Physics. European Mathematical Society, Istanbul (2007). arXiv:0806.1036 [math.DG]

  7. Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661 (2000). arXiv:math-ph/9903028

  8. Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633–652 (1996)

    Article  ADS  MATH  Google Scholar 

  9. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle—a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003). arXiv:math-ph/0112041

  10. Bunch T.S., Davies P.C.W.: Quantum field theory in De Sitter space: renormalization by Point-splitting. Proc. R. Soc. Lond. A. Math. Phys. Sci. 360, 117–134 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dappiaggi, C., Fredenhagen, K., Pinamonti, N.: Stable cosmological models driven by a free quantum scalar field. Phys. Rev. D77, 104015 (2008). arXiv:0801.2850 [gr-qc]

  12. Dappiaggi, C., Moretti, V., Pinamonti, N.: Cosmological horizons and reconstruction of quantum field theories. Commun. Math. Phys. 285, 1129–1163 (2009). arXiv:0712.1770 [gr-qc]

  13. Dappiaggi, C., Moretti, V., Pinamonti, N.: Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property. J. Math. Phys. 50, 062304 (2009). arXiv:0812.4033 [gr-qc]

  14. Eltzner, B., Gottschalk, H.: Dynamical backreaction in Robertson–Walker spacetime. Rev. Math. Phys. 23, 531–551 (2011). arXiv:1003.3630 [math-ph]

  15. Fewster, C.J., Verch, R.: Dynamical locality and covariance: what makes a physical theory the same in all spacetimes? Ann. Henri Poincaré 13, 1613–1674 (2012). arXiv:1106.4785 [math-ph]

  16. Haag, R. : Local quantum physics: fields, particles, algebras, 2nd edn. Springer, Berlin (1996)

    Book  Google Scholar 

  17. Hack, T.P.: On the backreaction of scalar and spinor quantum fields in curved spacetimes. Ph.D. thesis, Universität Hamburg (2010). arXiv:1008.1776 [gr-qc]

  18. Hack, T.P.: The ΛCDM-model in quantum field theory on curved spacetime and dark radiation (2013). arXiv:1306.3074 [gr-qc]

  19. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. 7, 65–222 (1982)

  20. Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289–326 (2001). arXiv:gr-qc/0103074

  21. Junker, W., Schrohe, E.: Adiabatic vacuum states on general spacetime manifolds: definition, construction, and physical properties, construction, and physical properties. Ann. Henri Poincaré 3, 1113–1181 (2002). arXiv:math-ph/0109010

  22. Kofman L.A., Linde A.D., Starobinsky A.A.: Inflationary universe generated by the combined action of a scalar field and gravitational vacuum polarization. Phys. Lett. B157, 361–367 (1985)

    Article  ADS  Google Scholar 

  23. Kusku, M.: A class of almost equilibrium states in Robertson–Walker spacetimes. Ph.D. thesis, Universität Hamburg (2008)

  24. Lüders C., Roberts J.E.: Local quasiequivalence and adiabatic vacuum states. Commun. Math. Phys. 134, 29–63 (1990)

    Article  ADS  MATH  Google Scholar 

  25. Moretti, V.: Comments on the stress–energy tensor operator in curved spacetime. Commun. Math. Phys. 232, 189–221 (2003). arXiv:gr-qc/0109048

  26. Olbermann, H.: States of low energy on Robertson–Walker spacetimes. Class. Quantum Grav. 24, 5011–5030 (2007). arXiv:0704.2986 [gr-qc]

  27. Parker L.E.: Quantized fields and particle creation in expanding universes. I. Phys. Rev. 183, 1057–1068 (1969)

    Article  ADS  MATH  Google Scholar 

  28. Pinamonti, N.: On the initial conditions and solutions of the semiclassical Einstein equations in a cosmological scenario. Commun. Math. Phys. 305, 563–604 (2011). arXiv:1001.0864 [gr-qc]

  29. Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space–time. Commun. Math. Phys. 179, 529–553 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13, 1203–1246 (2001). arXiv:math-ph/0008029

  31. Sbierski, J.: On the existence of a maximal Cauchy development for the Einstein equations—a dezornification (2013). arXiv:1309.7591 [gr-qc]

  32. Starobinsky A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B91, 99–102 (1980)

    Article  ADS  Google Scholar 

  33. Wald, R.M.: The back reaction effect in particle creation in curved spacetime. Commun. Math. Phys. 54, 1–19 (1977)

  34. Wald R.M.: Trace anomaly of a conformally invariant quantum field in curved spacetime. Phys. Rev. D17, 1477–1484 (1978)

    ADS  MathSciNet  Google Scholar 

  35. Zschoche, J.: The Chaplygin gas equation of state for the quantized free scalar field on cosmological spacetimes. Ann. Henri Poincaré Online (2013). arXiv:1303.4992 [gr-qc]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Pinamonti.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinamonti, N., Siemssen, D. Global Existence of Solutions of the Semiclassical Einstein Equation for Cosmological Spacetimes. Commun. Math. Phys. 334, 171–191 (2015). https://doi.org/10.1007/s00220-014-2099-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2099-5

Keywords

Navigation