Skip to main content
Log in

Black Holes Without Spacelike Singularities

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that for small, spherically symmetric perturbations of asymptotically flat two-ended Reissner–Nordström data for the Einstein–Maxwell-real scalar field system, the boundary of the dynamic spacetime which evolves is globally represented by a bifurcate null hypersurface across which the metric extends continuously. Under additional assumptions, it is shown that the Hawking mass blows up identically along this bifurcate null hypersurface, and thus the metric cannot be extended twice differentiably; in fact, it cannot be extended in a weaker sense characterized at the level of the Christoffel symbols. The proof combines estimates obtained in previous work with an elementary Cauchy stability argument. There are no restrictions on the size of the support of the scalar field, and the result applies to both the future and past boundary of spacetime. In particular, it follows that for an open set in the moduli space of solutions around Reissner–Nordström, there is no spacelike component of either the future or the past singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aretakis S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations I. Commun. Math. Phys. 307, 17–63 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Aretakis S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations II. Ann. Henri Poincaré 8, 1491–1538 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  3. Belinskii V.A., Khalatnikov I.M., Lifshitz E.M.: Oscillatory approach to a singular point in the relativistic cosmology. Adv. Phys. 19, 525 (1970)

    Article  ADS  Google Scholar 

  4. Bonanno A., Droz S., Israel W., Morsink S.M.: Structure of the charged spherical black hole interior. Proc. R. Soc. Lond. A 450, 553–567 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Brady P.R., Poisson E.: Cauchy horizon instability for Reissner–Nordstrom black holes in de Sitter space. Class. Quantum Gravity 9, 121–125 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Brady P.R., Núñez D., Sinha S.: Cauchy horizon singularity without mass inflation. Phys. Rev. D 47, 4239–4243 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  7. Brady P., Smith J.D.: Black hole singularities: a numerical approach. Phys. Rev. Lett. 75(7), 1256–1259 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Brady P.R., Moss I.G., Myers R.C.: Cosmic censorship: as strong as ever. Phys. Rev. Lett. 80, 3432–3425 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Burko L.M.: Structure of the black hole’s Cauchy-horizon singularity. Phys. Rev. Lett. 79(25), 4958–4961 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Chambers, C.M.: The Cauchy horizon in black hole—de Sitter spacetimes. Ann. Israel Phys. Soc. 13, 33–84 (1997). arXiv:gr-qc/9709025

  11. Choquét-Bruhat Y., Geroch R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)

    Article  ADS  MATH  Google Scholar 

  12. Christodoulou D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. 149(1), 183–217 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Christodoulou D.: On the global initial value problem and the issue of singularities. Class. Quantum Gravity 16, A23–A35 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Christodoulou, D.: The formation of black holes in general relativity. In: EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich (2009)

  15. Dafermos M.: Stability and instability of the Cauchy horizon for the spherically-symmetric Einstein–Maxwell-scalar field equations. Ann. Math. 158, 875–928 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dafermos M.: The interior of charged black holes and the problem of uniqueness in general relativity Comm. Pure Appl. Math. 58, 445–504 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dafermos M.: Spherically symmetric spacetimes with a trapped surface class. Quantum Gravit. 22(11), 2221–2232 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Dafermos, M., Rodnianski, I.: A note on boundary value problems for black hole evolutions. (2004). arXiv:gr-qc/0403034

  19. Dafermos M., Rodnianski I.: A proof of Price’s law for the collapse of a self-gravitating scalar field. Invent. Math. 162, 381–457 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Dafermos, M., Rendall A.: Strong Cosmic Censorship for Surface-Symmetric Cosmological Spacetimes with Collisionless Matter. (2007). arXiv:gr-qc/0701034

  21. Dafermos, M., Rodnianski, I.: The Black Hole Stability Problem for Linear Scalar Perturbations. (2010). arXiv:1010.5137

  22. Ellis G.F.R., King A.R.: Was the big bang a whimper?. Commun. Math. Phys. 39, 119–156 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  23. Gnedin M.L., Gnedin N.Y.: Destruction of the Cauchy horizon in the Reissner–Nordström black hole. Class. Quantum Gravit. 10, 1083–1102 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  24. Gundlach C., Price R., Pullin J.: Late-time behavior of stellar collapse and explosition. II: Nonlinear evolution. Phys. Rev. D 49, 890–899 (1994)

    Article  ADS  Google Scholar 

  25. Herman R., Hiscock W.A.: Strength of the mass inflation singularity. Phys. Rev. D 46, 1863–1865 (1992)

    Article  ADS  Google Scholar 

  26. Hiscock W.A.: Evolution of the interior of a charged black hole. Phys. Lett. 83A, 110–112 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hod S., Piran T.: Mass inflation in dynamic gravitational collapse of a charged scalar field. Phys. Rev. Lett. 81, 1554–1557 (1998)

    Article  ADS  Google Scholar 

  28. Israel, W.: Descent into the maelstrom: the black hole interior. In: Teitelboim, C., Zanelli, J. (eds.) The black Hole, 25 Years After. World Scientific, London (1998)

  29. Khan K.A., Penrose R.: Scattering of two impulsive gravitational plane waves. Nature 229, 185–186 (1971)

    Article  ADS  Google Scholar 

  30. Klainerman, S., Rodnianski, I., Szeftel, J.: The Bounded L2 Curvature Conjecture. (2012). arXiv:1204.1767

  31. Kommemi J.: The global structure of spherically symmetric charged scalar field spacetimes. Commun. Math. Phys. 323(1), 35–106 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Kommemi, J.: The Global Structure of Spherically Symmetric Charged Scalar Field Spacetimes. Ph.D. Thesis, University of Cambridge, Cambridge (2013)

  33. Luk, J., Rodnianski, I.: Local Propagation of Impulsive Gravitational Waves. (2012). arXiv:1209.1130

  34. Luk, J., Rodnianski, I.: Nonlinear Interactions of Impulsive Gravitational Waves for the Vacuum Einstein Equations. (2013). arXiv:1301.1072

  35. Ori A.: Inner structure of a charged black hole: an exact mass-inflation solution. Phys. Rev. Lett. 67, 789–792 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Ori A.: Perturbative approach to the inner structure of a rotating black hole. Gen. Relat. Gravit. 29(7), 881–929 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

  38. Penrose, R.: In: DeWitt, C.M., Wheeler, J.A. (eds.) Battelle Rencontres. W.A. Bejamin, New York, p. 222 (1968)

  39. Poisson E., Israel W.: Inner-horizon instability and mass inflation in black holes. Phys. Rev. Lett. 63(16), 1663–1666 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  40. Poisson E., Israel W.: Internal structure of black holes. Phys. Rev. D (3) 41(6), 1796–1809 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  41. Senovilla J.M.M.: On the boundary of the region containing trapped surfaces. AIP Conf. Proc. 1122, 72–87 (2009)

    Article  ADS  Google Scholar 

  42. Szekeres P.: Colliding plane gravitational waves. J. Math. Phys. 13, 286–294 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  43. Tipler F.: Singularities in conformally flat spacetimes. Phys. Lett. 64A, 8–10 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  44. Williams C.: Asymptotic behavior of spherically symmetric marginally trapped tubes. Ann. Henri Poincaré 9, 1029–1067 (2008)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihalis Dafermos.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dafermos, M. Black Holes Without Spacelike Singularities. Commun. Math. Phys. 332, 729–757 (2014). https://doi.org/10.1007/s00220-014-2063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2063-4

Keywords

Navigation