Skip to main content
Log in

Product Vacua with Boundary States and the Classification of Gapped Phases

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We address the question of the classification of gapped ground states in one dimension that cannot be distinguished by a local order parameter. We introduce a family of quantum spin systems on the one-dimensional chain that have a unique gapped ground state in the thermodynamic limit that is a simple product state, but which on the left and right half-infinite chains have additional zero energy edge states. The models, which we call Product Vacua with Boundary States, form phases that depend only on two integers corresponding to the number of edge states at each boundary. They can serve as representatives of equivalence classes of such gapped ground states phases and we show how the AKLT model and its SO(2J + 1)-invariant generalizations fit into this classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachmann S., Michalakis S., Nachtergaele B., Sims R.: Automorphic equivalence within gapped phases of quantum lattice systems. Commun. Math. Phys. 309, 835–871 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  3. Hastings M.: Lieb–Schultz–Mattis in higher dimensions. Phys. Rev. B 69(10), 104431 (2004)

    Article  ADS  Google Scholar 

  4. Nachtergaele B., Sims R.: A multi-dimensional Lieb–Schultz–Mattis theorem. Commun. Math. Phys. 276(2), 437–472 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Bravyi S., Hastings M.B.: A short proof of stability of topological order under local perturbations. Commun. Math. Phys. 307(3), 609–627 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Affleck I., Kennedy T., Lieb E.H., Tasaki H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115, 477–528 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  7. Tu H.-H., Zhang G.-M., Xiang T.: Class of exactly solvable SO(n) symmetric spin chains with matrix product ground states. Phys. Rev. B 78, 094404 (2008)

    Article  ADS  Google Scholar 

  8. Bachmann S., Nachtergaele B.: Product vacua with boundary states. Phys. Rev. B 86, 035149 (2012)

    Article  ADS  Google Scholar 

  9. Fannes M., Nachtergaele B., Werner R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Nachtergaele B.: The spectral gap for some spin chains with discrete symmetry breaking. Commun. Math. Phys. 175, 565–606 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Fernández-González, C., Schuch, N., Wolf, M.M., Cirac, J.I., Pérez-García, D.: Frustration free gapless Hamiltonians for matrix product states (2012) (arXiv:1210.6613)

  12. Kitaev A.Yu.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Hastings M., Wen X.-G.: Quasiadiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B 72(4), 045141 (2005)

    Article  ADS  Google Scholar 

  14. Chen X., Gu Z.-C., Wen X.-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82(15), 155138 (2010)

    Article  ADS  Google Scholar 

  15. Schuch N., Pérez-García D., Cirac I.: Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84, 165139 (2011)

    Article  ADS  Google Scholar 

  16. Hastings, M.B.: Locality in quantum systems. In: Quantum Theory from Small to Large Scales, volume XCV of Ecole de physique des Houches, pp. 171–212. Oxford University Press, Oxford (2012)

  17. Cirac J.I., Poilblanc D., Schuch N., Verstraete F.: Entanglement spectrum and boundary theories with projected entangled-pair states. Phys. Rev. B 83, 245134 (2011)

    Article  ADS  Google Scholar 

  18. Schuch N., Cirac I., Perez-Garcia D.: Peps as ground states: degeneracy and topology. Ann. Phys. 325, 2153 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Wen, X.-G.: Topological orders and edge excitations in fractional quantum hall states. In: Geyer, H.B. (ed.) Field Theory, Topology and Condensed Matter Physics, volume 456 of Lecture Notes in Physics, pp. 155–176. Springer, Berlin, Heidelberg (1995)

  20. Elbau P., Graf G.M.: Equality of bulk and edge hall conductance revisited. Commun. Math. Phys. 229, 415–432 (2002). doi:10.1007/s00220-002-0698-z

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Graf G.M., Porta M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324(3), 851–859 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. Chen X., Gu Z.-C., Wen X.-G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83, 035107 (2011)

    Article  ADS  Google Scholar 

  23. Chen X., Gu Z.-C., Wen X.-G.: Complete classification of one-dimensional gapped quantum phases in interacting spin systems. Phys. Rev. B 84, 235128 (2011)

    Article  ADS  Google Scholar 

  24. den Nijs M., Rommelse K.: Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. Rev. B 40(7), 4709–4734 (1989)

    Article  ADS  Google Scholar 

  25. Kennedy T., Tasaki H.: Hidden symmetry breaking and the Haldane phase in S = 1 quantum spin chains. Commun. Math. Phys. 147, 431–484 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Michalakis, S., Pytel, J.: Stability of frustration-free Hamiltonians. Commun. Math. Phys. 322, 277–302 (2013)

    Google Scholar 

  27. Yarotsky D.A.: Ground states in relatively bounded quantum perturbations of classical lattice systems. Commun. Math. Phys. 261, 799–819 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Bachmann.

Additional information

Communicated by M. Salmhofer

Copyright © 2014 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachmann, S., Nachtergaele, B. Product Vacua with Boundary States and the Classification of Gapped Phases. Commun. Math. Phys. 329, 509–544 (2014). https://doi.org/10.1007/s00220-014-2025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2025-x

Keywords

Navigation