Skip to main content
Log in

A Multi-Dimensional Lieb-Schultz-Mattis Theorem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For a large class of finite-range quantum spin models with half-integer spins, we prove that uniqueness of the ground state implies the existence of a low-lying excited state. For systems of linear size L, with arbitrary finite dimension, we obtain an upper bound on the excitation energy (i.e., the gap above the ground state) of the form (C log L)/L. This result can be regarded as a multi-dimensional Lieb-Schultz-Mattis theorem [14] and provides a rigorous proof of the main result in [8].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Affleck I. and Lieb E.H. (1986). A proof of part of Haldane’s conjecture on quantum spin chains. Lett. Math. Phys. 12: 57–69

    Article  MathSciNet  Google Scholar 

  2. Affleck I., Kennedy T., Lieb E.H. and Tasaki H. (1988). Valence Bond Ground States in Isotropic Quantum Antiferromagnets. Commun. Math. Phys. 115: 477–528

    Article  MathSciNet  Google Scholar 

  3. Aizenman M. and Nachtergaele B. (1994). Geometric aspects of quantum spin states. Commun. Math. Phys. 164: 17–63

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bratteli O. and Robinson D. (1997). Operator algebras and quantum statistical mechanics 2. Springer Verlag, New York, NY

    MATH  Google Scholar 

  5. Dyson F., Lieb E.H. and Simon B. (1978). Phase transitions in quantum spin systems with isotropic and non-isotropic interactions. J. Stat. Phys. 18: 335–383

    Article  MathSciNet  Google Scholar 

  6. Haldane F.D.M. (1983). Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model. Phys. Lett. 93: 464–468

    Article  MathSciNet  Google Scholar 

  7. Haldane F.D.M. (1983). Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50: 1153–1156

    Article  ADS  MathSciNet  Google Scholar 

  8. Hastings M.B. (2004). Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69: 104431–14

    Article  ADS  Google Scholar 

  9. Hastings M.B. and Koma T. (2006). Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265: 781–804

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Kennedy T., Lieb E.H. and Shastry B.S. (1988). Existence of Néel order in some spin 1/2 Heisenberg antiferromagnets. J. Stat. Phys. 53: 1019–1030

    Article  MathSciNet  Google Scholar 

  11. Koma T. and Tasaki H. (1994). Symmetry breaking and finite-size effects in quantum many-body systems. J. Stat. Phys. 76: 745–803

    Article  MATH  MathSciNet  Google Scholar 

  12. Landau L., Fernando-Perez J. and Wreszinski W.F. (1981). Energy gap, clustering, and the Goldstone theorem in statistical mechanics. J. Stat. Phys. 26: 755–766

    Article  Google Scholar 

  13. Lieb E. and Mattis D. (1962). Ordering energy levels in interacting spin chains. Journ. Math. Phys. 3: 749–751

    Article  MATH  Google Scholar 

  14. Lieb E., Schultz T. and Mattis D. (1961). Two soluble models of an antiferromagnetic chain. Ann. Phys. (N.Y.) 16: 407–466

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Lieb E.H. and Robinson D.W. (1972). The finite group velocity of quantum spin systems. Commun. Math. Phys. 28: 251–257

    Article  ADS  MathSciNet  Google Scholar 

  16. Manousakis E. (1991). The spin-1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides. Rev. Mod. Phys. 63: 1–62

    Article  ADS  Google Scholar 

  17. Nachtergaele, B.: Quasi-state decompositions for quantum spin systems. Probability Theory and Mathematical Statistics. Proceedings of the 6th Vilnius Conference (Grigelionis, B. et al., ed.), Utrecht- Tokyo-Vilnius, VSP/Tev, 1994, pp. 565–590

  18. Nachtergaele B., Ogata Y. and Sims R. (2006). Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124: 1–13

    Article  MATH  MathSciNet  Google Scholar 

  19. Nachtergaele B. and Sims R. (2007). Recent progress in quantum spin systems. Markov Processes Rel. Fields. 13(2): 315–329

    Google Scholar 

  20. Nachtergaele B. and Sims R. (2006). Lieb-Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265: 119–130

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Sachdev, S.: Quantum antiferromagnets in two dimensions. In: Low dimensional quantum field theories for condensed matter physicists. Yu Lu, S., Lundqvist, G., Morandi, eds., Singapore: World Scientific, 1995

  22. Sachdev S. and Park K. (2002). Ground states of quantum antiferromagnets in two dimensions. Annals of Physics (N.Y.) 298: 58–122

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Simon, B.: The statistical mechanics of lattice gases. Princeton Series in Physics, Vol. 1, Princeton, NJ: Princeton University Press, 1993

  24. Tasaki, H.: Low-lying excitation in one-dimensional lattice electron system. http://arXiv.org/list/cond-mat/0407616, 2004

  25. Yamanaka M., Oshikawa M. and Affleck I. (1997). Nonperturbative approach to Luttinger’s theorem in one dimension. Phys. Rev. Lett. 79: 1110–1113

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Nachtergaele.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nachtergaele, B., Sims, R. A Multi-Dimensional Lieb-Schultz-Mattis Theorem. Commun. Math. Phys. 276, 437–472 (2007). https://doi.org/10.1007/s00220-007-0342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0342-z

Keywords

Navigation