Skip to main content
Log in

On the Crystallization of 2D Hexagonal Lattices

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is a fundamental problem to understand why solids form crystals at zero temperature and how atomic interaction determines the particular crystal structure that a material selects. In this paper we focus on the zero temperature case and consider a class of atomic potentials V = V 2 + V 3, where V 2 is a pair potential of Lennard-Jones type and V 3 is a three-body potential of Stillinger-Weber type. For this class of potentials we prove that the ground state energy per particle converges to a finite value as the number of particles tends to infinity. This value is given by the corresponding value for a optimal hexagonal lattice, optimized with respect to the lattice spacing. Furthermore, under suitable periodic or Dirichlet boundary condition, we show that the minimizers do form a hexagonal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blanc X., Le Bris C.: Periodicity of the infinite-volume ground state of a one-dimensional quantum model. Nonlinear Anal. Ser. A: Theory Methods 48(6), 791–803 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Friesecke G., James R., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55, 1461–1506 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gardner C.S., Radin C.: The infinite-volume ground state of the Lennard-Jones potential. J. Stat. Phys. 20(6), 719–724 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  4. Hamrick G.C., Radin C.: The symmetry of ground states under perturbation. J. Stat. Phys. 21, 601–607 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  5. Heitman R., Radin C.: Ground states for sticky disks. J. Stat. Phys. 22, 281–287 (1980)

    Article  ADS  Google Scholar 

  6. John F.: Rotation and strain. Comm. Pure. Appl. Math. 14, 391–413 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kohn R.V.: New integral estimates for deformations in terms of their nonlinear strain. Arch. Mech. Anal. 78, 131–172 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Müller S.: Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. Part. Differ. Eqs. 1(2), 169–204 (1993)

    Article  MATH  Google Scholar 

  9. Radin C.: The ground state for soft disks. J. Stat. Phys. 26(2), 367–372 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  10. Radin C.: Classical ground states in one dimension. J. Stat. Phys. 35, 109–117 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  11. Radin C., Schulmann L.S.: Periodicity of classical ground states, Phys. Rev. Lett. 51(8), 621–622 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  12. Radin C.: Low temperature and the origin of crystalline symmetry. Int. J. Mod. Phys. B 1, 1157–1191 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  13. Rickman, S.: Quasiregular mappings. Berlin Heidelberg-New York Springer-Verlag, 1993

  14. Theil F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. Ventevogel W.J.: On the configuration of a one-dimensional system of interacting particles with minimum potential energy per particle. Phys. A. 92, 343–361 (1978)

    Article  Google Scholar 

  16. Ventevogel W.J., Nijboer B.R.A.: On the configuration of systems of interacting particle with minimum potential energy per particle. Phys. A. 98, 274–288 (1979)

    Article  MathSciNet  Google Scholar 

  17. Ventevogel W.J., Nijboer B.R.A.: On the configuration of systems of interacting particles with minimum potential energy per particle. Phys. A. 99, 565–580 (1979)

    Article  MathSciNet  Google Scholar 

  18. Nijboer B.R.A., Ruijgrok Th.W.: On the minimum-energy configuration of a one-dimensional system of particles interacting with the potential \({\phi(x)=(1+x^4)^{-1}}\) . Phys. A. 133, 319–329 (1985)

    Article  Google Scholar 

  19. Yedder, A.B.H., Blanc, X., Le Bris, C.: A numerical investigation of the 2-dimensional crystal problem. Preprint CERMICS (2003), available at http://www.ann.jussieu.fr/publications/2003/R03003.html, 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Li.

Additional information

Communicated by G. Gallavotti

Dedicated with admiration to Professor Tom Spencer on occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

E, W., Li, D. On the Crystallization of 2D Hexagonal Lattices. Commun. Math. Phys. 286, 1099–1140 (2009). https://doi.org/10.1007/s00220-008-0586-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0586-2

Keywords

Navigation