Skip to main content
Log in

Moduli of Vortices and Grassmann Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We use the framework of Quot schemes to give a novel description of the moduli spaces of stable n-pairs, also interpreted as gauged vortices on a closed Riemann surface Σ with target \({{\rm Mat}_{r \times n}(\mathbb{C})}\), where n ≥ r. We then show that these moduli spaces embed canonically into certain Grassmann manifolds, and thus obtain natural Kähler metrics of Fubini–Study type. These spaces are smooth at least in the local case r = n. For abelian local vortices we prove that, if a certain “quantization” condition is satisfied, the embedding can be chosen in such a way that the induced Fubini–Study structure realizes the Kähler class of the usual L 2 metric of gauged vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F.: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85, 181–207 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atiyah M.F., Bott R.: The Yang–Mills equations over Riemann surfaces. Phys. Trans. R. Soc. London 308, 3495–3508 (1982)

    Google Scholar 

  3. Baptista J.M.: Non-abelian vortices on compact Riemann surfaces. Commun. Math. Phys. 291, 799–812 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Baptista J.M.: On the L 2-metric of vortex moduli spaces. Nucl. Phys. B 844, 308–333 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Baptista J.M., Manton N.S.: The dynamics of vortices on S 2 near the Bradlow limit. J. Math. Phys. 44, 3495–3508 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bertram A., Daskalopoulos G., Wentworth R.: Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians. J. Amer. Math. Soc. 9, 529–571 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertram A., Thaddeus M.: On the quantum cohomology of a symmetric product of an algebraic curve. Duke Math. J. 108, 329–362 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bradlow S.: Vortices in holomorphic line bundles over closed Kähler manifolds. Commun. Math. Phys. 135, 1–17 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Bradlow S.: Special metrics and stability for holomorphic bundles with global sections. J. Diff. Geom. 33, 169–213 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Bradlow S., Daskalopoulos G.: Moduli of stable pairs for holomorphic bundles over Riemann surfaces. Internat. J. Math. 2, 477–513 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bradlow S., Daskalopoulos G.: Moduli of stable pairs for holomorphic bundles over Riemann surfaces II. Internat. J. Math. 4, 903–925 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bradlow, S., Daskalopoulos, G.D., García-Prada, O., Wentworth, R.: Stable augmented bundles over Riemann surfaces. In: Hitchin, N.J., Newstead, P.E., Oxbury, W.M. (eds.) Vector Bundles in Algebraic Geometry, LMS Lecture Notes Series 208. Cambridge: Cambridge University Press, pp. 15–67, 1995

  13. Chern, S.S., Chen, W.H., Lam, K.S.: Lectures on Differential Geometry. Singapore: World Scientific, 1999

  14. Donaldson S.K.: A new proof of a theorem of Narasimhan and Seshadri. J. Diff. Geom. 18, 269–277 (1983)

    MathSciNet  MATH  Google Scholar 

  15. Donaldson, S.K., Kronheimer, P.: The Geometry of Four-Manifolds. London: Clarendon Press, 1990

  16. Eisenbud, D., Harris, J.: The Geometry of Schemes. Berlin-Heidelberg-New York: Springer, 2007

  17. Eto M., Isozumi Y., Nitta M., Ohashi K., Sakai N.: Solitons in the Higgs phase: the moduli matrix approach. J. Phys. A: Math. Gen. 39, R315–R392 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Fulton, W.: Algebraic Topology: A First Course. Berlin-Heidelberg-New York: Springer, 1997

  19. García-Prada O.: A direct existence proof for the vortex equations over a compact Riemann surface. Bull. London Math. Soc. 26, 88–96 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. New York: John Wiley and Sons, 1978

  21. Grothendieck, A.: Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert, Séminaire Bourbaki, Vol. 6, Exp. No. 221, Paris: Soc. Math. France, 1995, pp. 249–276

  22. Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves. Berlin: Aspects of Mathematics, Vieweg & Sohn, 1997

  23. Jaffe, A., Taubes, C.: Vortices and Monopoles. Basel-Boston: Birkhäuser, 1980

  24. Macdonald I.G.: Symmetric products of an algebraic curve. Topology 1, 319–343 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  25. Manton N.S., Nasir S.M.: Volume of vortex moduli spaces. Commun. Math. Phys. 199, 591–604 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Manton N.S., Romão N.M.: Vortices and Jacobian varieties. J. Geom. Phys. 61, 1135–1155 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Okonek Ch., Teleman A.: Gauge theoretical equivariant Gromov–Witten invariants and the full Seiberg–Witten invariants of ruled surfaces. Commun. Math. Phys. 227, 551–585 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Thaddeus M.: Stable pairs, linear systems, and the Verlinde formula. Invent. Math. 117, 317–353 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Tong D.: Quantum vortex strings: a review. Ann. Phys. 324, 30–52 (2009)

    Article  ADS  MATH  Google Scholar 

  30. Uhlenbeck K., Yau S.-T.: On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Comm. Pure Appl. Math. 39, S257–S293 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno M. Romão.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, I., Romão, N.M. Moduli of Vortices and Grassmann Manifolds. Commun. Math. Phys. 320, 1–20 (2013). https://doi.org/10.1007/s00220-013-1704-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1704-3

Keywords

Navigation