Skip to main content
Log in

Kähler quantization of vortex moduli

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss the Kähler quantization of moduli spaces of vortices in line bundles over compact surfaces \(\Sigma \). This furnishes a semiclassical framework for the study of quantum vortex dynamics in the Schrödinger–Chern–Simons model. We employ Deligne’s approach to Quillen’s metric in determinants of cohomology to construct all the quantum Hilbert spaces in this context. An alternative description of the quantum wavesections, in terms of multiparticle states of spinors on \(\Sigma \) itself (valued in a prequantization of a multiple of its area form), is also obtained. This viewpoint sheds light on the nature of the quantum solitonic particles that emerge from the gauge theory. We find that in some cases (where the area of \(\Sigma \) is small enough in relation to its genus) the dimensions of the quantum Hilbert spaces may be sensitive to the input data required by the quantization scheme, and also address the issue of relating different choices of such data geometrically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that the factor of i that is standard in this definition is absent, as we follow the convention of identifying curvatures with real forms, i.e. valued in a copy of \({\mathbb {R}}\) that is identified with the Lie algebra \(\mathfrak {u}(1)\). See also Eq. (19), where both curvature and symplectic form are real, as in [62].

References

  1. Andersen, J.E., Gammelgaard, N.L., Lauridsen, M.R.: Hitchin’s connection in metaplectic quantization. Quant. Top. 3, 327–357 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersen, J.E., Rasmussen, K.: A Hitchin connection for a large class of families of Kähler. In: Andersen, J.E., Dancer, A., García-Prada, O. (eds.) Geometry and Physics–A Festschrift for Nigel Hitchin, vol. 1, pp. 135–161. Oxford University Press, Oxford (2018)

  3. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, vol. I. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  4. Atiyah, M.F.: Topological quantum field theory. Publ. Math. IHÉS 68, 175–186 (1988)

    Article  MATH  Google Scholar 

  5. Axelrod, S., della Pietra, S., Witten, E.: Geometric quantization of Chern–Simons gauge theory. J. Differ. Geom. 33, 787–902 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baier, T., Mourão, J.M., Nunes, J.P.: Quantization of Abelian varieties: distributional sections and the transition from Kähler to real polarizations. J. Funct. Anal. 258, 3388–3412 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baptista, J.M.: On the \(L^2\)-metric of vortex moduli spaces. Nucl. Phys. B 844, 308–333 (2011)

    Article  ADS  MATH  Google Scholar 

  8. Bates, S., Weinstein, A.: Lectures on the Geometry of Quantization. American Mathematical Society, Philadelphia (1997)

    MATH  Google Scholar 

  9. Bertram, A., Thaddeus, M.: On the quantum cohomology of a symmetric product of an algebraic curve. Duke J. Math. 108, 329–362 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bismut, J.-M., Freed, D.: The analysis of elliptic families: I. Metrics and connections on determinant bundles. Commun. Math. Phys. 106, 159–176 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bismut, J.-M., Freed, D.: The analysis of elliptic families II: Dirac operators, eta invariants, and the holonomy theorem. Commun. Math. Phys. 107, 103–163 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Biswas, I., Raghavendra, N.: The determinant bundle on the moduli space of stable triples over a curve. Proc. Indian Acad. Sci. (Math. Sci.) 112, 367–382 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Biswas, I., Schumacher, G.: Coupled vortex equations and moduli: deformation theoretic approach and Kähler geometry. Math. Ann. 343, 825–851 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bogomol’nyĭ, E.B.: The stability of classical solutions. Sov. J. Nucl. Phys. 24, 449–454 (1976)

    MathSciNet  Google Scholar 

  15. Bökstedt, M., Romão, N.M.: Pairs of pants, Pochhammer curves and \(L^2\)-invariants; arXiv:1410.2429

  16. Borel, A., Hirzebruch, F.: Characteristic classes and homogeneous spaces I. Am. J. Math. 80, 97–136 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bradlow, S.B.: Vortices in holomorphic line bundles over closed Kähler manifolds. Commun. Math. Phys. 135, 1–17 (1990)

    Article  ADS  MATH  Google Scholar 

  18. Cannas da Silva, A.: Lectures on Symplectic Geometry. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  19. Demoulini, S., Stuart, D.: Adiabatic limit and the slow motion of vortices in a Chern–Simons–Schrödinger system. Commun. Math. Phys. 290, 597–632 (2006)

    Article  ADS  MATH  Google Scholar 

  20. Deligne, P.: Le déterminant de la cohomologie. Contemp. Math. 67, 93–117 (1985)

    Article  Google Scholar 

  21. Dey, R.: Geometric prequantization of the moduli space of the vortex equations on a Riemann surface. J. Math. Phys. 47, 103501 (2009). (Erratum ibid. 50 (2009) 119901)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Clarendon Press, Oxford (1958)

    MATH  Google Scholar 

  23. Donaldson, S.K.: Topological field theories and formulae of Casson and Meng–Taubes. In: Hass, J., Scharlemann, M. (eds.) Proceedings of the Kirbyfest (Berkeley, CA, 1998), pp. 87–102. International Press, New York (1999)

    Google Scholar 

  24. Donaldson, S., Kronheimer, P.: The Geometry of Four-Manifolds. Clarendon Press, Oxford (1990)

    MATH  Google Scholar 

  25. Elkik, R.: Fibrés d’intersections et intégrales de classes de Chern. Ann. Sci. École Norm. Sup. 22, 195–226 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. García-Prada, O.: A direct existence proof for the vortex equations over a compact Riemann surface. Bull. Lond. Math. Soc. 26, 88–96 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. García-Prada, O.: Invariant connections and vortices. Commun. Math. Phys. 156, 527–546 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  29. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  30. Hitchin, N.J.: Flat connections and geometric quantization. Commun. Math. Phys. 131, 347–380 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Jaffe, A., Taubes, C.: Vortices and Monopoles. Birkhäuser, Boston (1980)

    MATH  Google Scholar 

  32. Jost, J.: Compact Riemann Surfaces, 3rd edn. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  33. Kempf, G.R.: Algebraic Varieties. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  34. Knudsen, F., Mumford, D.: The projectivity of the moduli space of stable curves I: Preliminaries on “det” and “div”. Math. Scand. 39, 19–55 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kronheimer, P., Mrowka, T.: Monopoles and Three-Manifolds. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  36. Krusch, S., Sutcliffe, P.M.: Schrödinger–Chern–Simons vortex dynamics. Nonlinearity 19, 1515–1534 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Macdonald, I.G.: Symmetric products of an algebraic curve. Topology 1, 319–343 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  38. Maldonado, R., Manton, N.S.: Analytic vortex solutions on compact hyperbolic surfaces. J. Phys. A: Math. Theor. 48, 245403 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Manton, N.S.: First-order vortex dynamics. Ann. Phys. 256, 114–131 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Manton, N.S., Nasir, S.M.: Volume of vortex moduli spaces. Commun. Math. Phys. 199, 591–604 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Manton, N.S., Romão, N.M.: Vortices and Jacobian varieties. J. Geom. Phys. 61, 1135–1155 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Manton, N., Sutcliffe, P.: Topological Solitons. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  43. Mattuck, A.: Symmetric products and Jacobians. Am. J. Math. 83, 189–206 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  44. McDuff, D., Salamon, D.: Introduction to Symplectic Topology, 2nd edn. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  45. Moll, V.H.: Numbers and Functions. American Mathematical Society, Philadelphia (2012)

    MATH  Google Scholar 

  46. Mundet i Riera, I.: A Hitchin–Kobayashi correspondence for Kähler fibrations. J. Reine Angew. Math. 528, 41–80 (2000)

    MathSciNet  MATH  Google Scholar 

  47. Nguyen, T.: Lagrangian correspondences and Donaldson’s TQFT construction of the Seiberg–Witten invariants of 3-manifolds. Algorithms Geom. Topol. 14, 863–923 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Noguchi, M.: Yang-Mills-Higgs theory on a compact Riemann surface. J. Math. Phys. 28, 2343–2346 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Perutz, T.: Symplectic fibrations and the Abelian vortex equations. Commun. Math. Phys. 278, 289–306 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Polishchuk, A.: Abelian Varieties, Theta Functions and the Fourier Transform. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  51. Quillen, D.: Determinants of Cauchy–Riemann operators over a Riemann surface. Funct. Anal. Appl. 19, 31–34 (1985)

    Article  MATH  Google Scholar 

  52. Romão, N.M.: Classical and Quantum Aspects of Topological Solitons, PhD thesis, University of Cambridge, (2002)

  53. Romão, N.M.: Quantum Chern–Simons vortices on a sphere. J. Math. Phys. 42, 3445–3469 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Romão, N.M., Speight, J.M.: Slow Schrödinger dynamics of gauged vortices. Nonlinearity 17, 1337–1355 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Samols, T.M.: Vortex scattering. Commun. Math. Phys. 145, 149–180 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Segal, G.: Geometric aspects of quantum field theory. In: Satake, I. (ed.) Proceedings of the International Congress of Mathematicians (Kyoto, 1990), vol. 2, pp. 1387–1396. Springer, Berlin (1992)

    Google Scholar 

  57. Soulé, C., Abramovich, D., Burnol, J.-F., Kramer, J.: Lectures on Arakelov Geometry. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  58. Strachan, I.A.B.: Low-velocity scattering of vortices in a modified Abelian Higgs model. J. Math. Phys. 33, 102–110 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Stuart, D.M.A.: Dynamics of Abelian Higgs vortices in the near Bogomolny regime. Commun. Math. Phys. 159, 51–91 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Stuart, D.M.A.: Analysis of the adiabatic limit for solitons in classical field theory. Proc. R. Soc. Lond. A 463, 2753–2781 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Tong, D., Turner, C.: Quantum Hall effect in supersymmetric Chern–Simons theories. Phys. Rev. B 92, 235123 (2015)

    Article  ADS  Google Scholar 

  62. Woodhouse, N.M.J.: Geometric Quantization, 2nd edn. Clarendon Press, Oxford (1991)

    MATH  Google Scholar 

Download references

Acknowledgements

This project was started as part of the activities of a Junior Trimester Program on “Mathematical Physics” hosted at the Hausdorff Research Institute for Mathematics (HIM), University of Bonn, in 2012. We would like to thank HIM for hospitality, as well as Marcel Bökstedt (Aarhus), Kai Cieliebak (Augsburg), Daniel Huybrechts (Bonn), Nick Manton (Cambridge) and two anonymous referees for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno M. Romão.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eriksson, D., Romão, N.M. Kähler quantization of vortex moduli. Lett Math Phys 110, 659–693 (2020). https://doi.org/10.1007/s11005-019-01235-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01235-2

Keywords

Mathematics Subject Classification

Navigation