Skip to main content
Log in

Spontaneous Decay of Resonant Energy Levels for Molecules with Moving Nuclei

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Pauli-Fierz Hamiltonian with dynamical nuclei and investigate the transitions between the resonant electronic energy levels under the assumption that there are no free photons in the beginning. Coupling the limits of small fine structure constant and of heavy nuclei allows us to prove the validity of the Born-Oppenheimer approximation at leading order and to provide a simple formula for the rate of spontaneous decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abou Salem W.K., Faupin J., Fröhlich J., Sigal I.M.: On theory of resonances in non-relativistic QED and related models. Adv. in Appl. Math. 43, 201–230 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bach V., Fröhlich J., Sigal I.M.: Spectral Analysis for Systems of Atoms and Molecules Coupled to the Quantized Radiation Field. Commun. Math. Phys. 207, 249–290 (1999)

    Article  ADS  MATH  Google Scholar 

  3. Betz V., Goddard B., Teufel S.: Superadiabatic transitions in quantum molecular dynamics. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465, 3553–3580 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Betz V., Goddard B.: Accurate prediction of non-adiabatic transitions through avoided crossings. Phys. Rev. Lett. 103, 213001 (2009)

    Article  ADS  Google Scholar 

  5. Faupin J.: Resonances of the Confined Hydrogen Atom and the Lamb-Dicke Effect in Non-Relativistic QED. Ann. Henri Poincaré 9, 743–773 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Griesemer M., Lieb E.H., Loss M.: Ground states in non-relativistic quantum electrodynamics. Invent. Math. 145, 557–595 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Hainzl C., Seiringer R.: Mass renormalization and energy level shift in non-relativistic QED. Adv. Theor. Math. Phys. 6, 847–871 (2002)

    MathSciNet  Google Scholar 

  8. Hagedorn G.A., Joye A.: A time-dependent Born-Oppenheimer approximation with exponentially small error estimates. Commun. Math. Phys. 223, 583–626 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Hagedorn G.A., Joye A.: Determination of non-adiabatic scattering wave functions in a Born-Oppenheimer model. Ann. Henri Poincaré 6, 937–990 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Hislop, P.D., Sigal, I.M.: Introduction to Spectral Theory with Applications to Schrödinger Operators. Applied Mathematical Sciences 113, Berlin-Heidelberg-NewYork: Springer, 1996

  11. Hasler D., Herbst I., Huber M.: On the Lifetime of Quasi-stationary States in Non-Relativistic QED. Ann. Henri Poincaré 9, 1005–1028 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Hunziker W.: Distortion analyticity and molecular resonance curves. Ann. Inst. H. Poincaré 45, 339–358 (1986)

    MathSciNet  MATH  Google Scholar 

  13. Jahnke T., Lubich C.: Error Bounds for Exponential Operator Splittings. BIT 40, 735–744 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lasser C., Teufel S.: Propagation through conical crossings: an asymptotic semigroup. Comm. Pure Appl. Math. 58, 1188–1230 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lieb E.H., Loss M.: Existence of Atoms and Molecules in Non-Relativistic Quantum Electrodynamics. Adv. Theor. Math. Phys. 7, 667–710 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Martinez A., Sordoni V.: On the time-dependent Born-Oppenheimer approximation with smooth potential. Comptes Rendu Math. 334, 185–188 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martinez, A., Sordoni, V.: Twisted Pseudodifferential Calculus and Application to the Quantum Evolution of Molecules. Mem. AMS 200(936) (2009)

  18. Nenciu G.: Linear Adiabatic Theory, Exponential Estimates. Commun. Math. Phys. 152, 479–496 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Panati G., Spohn H., Teufel S.: Space-adiabatic perturbation theory. Adv. Theor. Math. Phys. 7, 145–204 (2003)

    MathSciNet  Google Scholar 

  20. Panati G., Spohn H., Teufel S.: The Time-Dependent Born-Oppenheimer Approximation. ESIAM: Math. Model. and Num. Anal. 41, 297–314 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I: Functional Analysis. London-NewYork: Academic Press, 1978

  22. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV: Analysis of Operators. London-NewYork: Academic Press, 1978

  23. Simon B.: Resonances and Complex Scaling: A Rigorous Overview. Int. J. Quant. Chem. 14, 529–542 (1978)

    Article  ADS  Google Scholar 

  24. Spohn H., Teufel S.: Adiabatic decoupling and time-dependent Born-Oppenheimer theory. Commun. Math. Phys. 224, 113–132 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Tenuta L.: Quasi-static Limits in Nonrelativistic Quantum Electrodynamics. Ann. Henri Poincaré 9, 553–593 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Tenuta L., Teufel S.: Effective dynamics for particles coupled to a quantized scalar field. Commun. Math. Phys. 280, 751–805 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Teufel S.: A Note on the Adiabatic Theorem Without Gap Condition. Lett. Math. Phys. 58, 261–266 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Teufel, S. Adiabatic Perturbation Theory in Quantum Dynamics. Lecture Notes in Mathematics 1821, Berlin-Heidelberg-New York: Springer, 2003

  29. Wachsmuth, J., Teufel, S. Effective Hamiltonians for Constrained Quantum Systems. http://arxiv.org/abs/0907.0351v3 [math-ph], 2009

  30. Zhislin G.M.: Discussion of the spectrum of the Schrödinger operator for systems of many particles. Tr. Mosk. Mat. Obs. 9, 81–128 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Teufel.

Additional information

Communicated by I. M. Sigal

This work was supported by the German Science Foundation (DFG).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teufel, S., Wachsmuth, J. Spontaneous Decay of Resonant Energy Levels for Molecules with Moving Nuclei. Commun. Math. Phys. 315, 699–738 (2012). https://doi.org/10.1007/s00220-012-1547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1547-3

Keywords

Navigation