Skip to main content
Log in

Emergent Spacetime from Modular Motives

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The program of constructing spacetime geometry from string theoretic modular forms is extended to Calabi-Yau varieties of dimensions three and four, as well as higher rank motives. Modular forms on the worldsheet can be constructed from the geometry of spacetime by computing the L–functions associated to omega motives of Calabi-Yau varieties, generated by their holomorphic n−forms via Galois representations. The modular forms that emerge in this way are related to characters of the underlying rational conformal field theory. The converse problem of constructing space from string theory proceeds in the class of diagonal theories by determining the motives associated to modular forms in the category of pure motives with complex multiplication. The emerging picture suggests that the L–function can be viewed as defining a map between the geometric category of motives and the category of conformal field theories on the worldsheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiles A.: Modular elliptic curves and Fermat’s Last Theorem. Ann. Math. 141, 443–551 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Taylor R., Wiles A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. 141, 553–572 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Breuil C., Conrad B., Diamond F., Taylor R.: On the modularity of elliptic curves over \({\mathbb{Q}}\) or Wild 3-adic exercises. J. Amer. Math. Soc. 14, 843–939 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Langlands, R.: LFunctions and automorphic representations, Proc. Int. Cong. Math. 1978, Helsinki: Acad. Sci. Fennica (1980)

  5. Hecke E.: Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung. Math. Ann. 112, 664–699 (1936)

    Article  MathSciNet  Google Scholar 

  6. Weil A.: Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann. 168, 149–156 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. Langlands, R.P.: Problems in the theory of automorphic forms, In: Lectures in Modern Analysis and Applications III, LNM 170, Berlin-Heidelberg-New York: Springer Verlag, 1970

  8. Langlands R.P.: Euler Products. Yale University Press, New Haven, CT (1971)

    MATH  Google Scholar 

  9. Schimmrigk R., Underwood S.: The Shimura-Taniyama conjecture and conformal field theories. J. Geom. Phys. 48, 169–189 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Lynker M., Schimmrigk R.: Geometric Kac–Moody modularity. J. Geom. Phys. 56, 843–863 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Schimmrigk R.: Arithmetic spacetime geometry from string theory. Int. J. Mod. Phys. A21, 6323–6350 (2006)

    MathSciNet  ADS  Google Scholar 

  12. Schimmrigk R.: The Langlands program and string modular K3 surfaces. Nucl. Phys. B771, 143–166 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  13. Gepner D.: Spacetime supersymmetry in compactified string theory and superconformal models. Nucl. Phys. B296, 757–778 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  14. Ramakrishnan D.: Modularity of the Rankin-Selberg L–series, and multiplicity one for SL(2). Ann. Math. 152, 45–111 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kac V.G., Peterson D.H.: Infinite-dimensional Lie algebras, theta functions and modular forms. Adv. Math. 53, 125–264 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hecke E.: Über die Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung II. Math. Ann. 114, 316–351 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hecke, E.: Über die Dirichlet-Reihen mit Funktionalgleichungen und ihre Nullstellen auf der Mittelgraden. Sitzungsberichte d. Bayerischen Akad. d. Wissenschaftern, 1937, pp. 73–95

  18. Shimura G.: On Elliptic Curves with Complex Multiplication as Factors of the Jacobians of Modular Function Fields. Nagoya Math. J. 43, 199–208 (1971)

    MathSciNet  MATH  Google Scholar 

  19. Ribet, K.A.: Galois representations attached to eigenforms with nebentypus, In: Modular functions of one variable V, eds., J.-P. Serre, D. Zagier, LNM 601, Berlin-Heidelberg-New York: Springer, 1977

  20. Miyake T.: Modular Forms. Springer, Berlin-Heidelberg-New York (1989)

    MATH  Google Scholar 

  21. Iwaniec H.: Topics in Classical Automorphic Forms. Ame. Math. Soc., Providence, RI (1997)

    MATH  Google Scholar 

  22. Yui, N.: The Lseries of Calabi-Yau orifolds of CM type, with an appendix by Y. Goto. In: Mirror Symmetry V, AMS/IP Stud. Adv. Math. 38, Providence, RI: Amer. Math. Soc., 2006, pp. 185–252

  23. Shimura G.: The special values of the zeta functions associated with cusp forms. Com. Pure. Appl. Math. 29, 783–804 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Deligne, P.: Formes modulaires et représentations -adique, Séminaire Bourbaki 355 (février 1969), LNM 179, Berlin-Heidelberg-New York: Springer, 1971, pp. 139–172

  25. Jannsen, U.: Mixed motives and algebraic K-theory. LNM 1400, Berlin-Heidelberg-New York: Springer 1990

  26. Scholl A.J.: Motives from modular forms. Inv. Math. 100, 419–430 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Schimmrigk R.: Critical string vacua from noncritical manifolds. Phys. Rev. Lett. 70, 3688–3691 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Candelas P., Derrick E., Parkes L.: Generalized Calabi-Yau manifolds and the mirror of a rigid manifold. Nucl. Phys. B407, 115–154 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  29. Schimmrigk R.: Mirror symmetry and string vacua from a special class of Fano varieties. Int. J. Mod. Phys. A11, 3049–3096 (1996)

    MathSciNet  ADS  Google Scholar 

  30. Kharel, S., Lynker, M., Schimmrigk, R.: String modular motives for mirrors of rigid Calabi-Yau varieties, in Modular forms and string duality, Fields Inst. Commun. 54, Providence, PI: Amer. Math. Soc. Felds. Dist., 2008, pp. 47–63

  31. Manin Yu.I.: Correspondences, motifs and monoidal transformations. Math. USSR Sbornik 6, 439–470 (1968)

    Article  Google Scholar 

  32. Demazure, M.: Motifs des variétés algebrique, Séminaires Bourbaki, exp. 365, 1969

  33. Kleiman, S.: Motives. In: Algebraic Geometry, Oslo 1970, Oort F. (ed.) Groningen 1972, pp. 53–82

  34. Murre J.P.: Introduction to the theory of motives. Bolletino U.M.I. 10-A, 477–489 (1996)

    MathSciNet  Google Scholar 

  35. Jannsen U.: Motives, numerical equivalence, and semi-simplicity. Invent. Math. 107, 447–452 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Scholl, A.J.: Classical Motives, In: Motives, Proc. Symp. Pure Math. 55, eds., U. Jannsen, S. Kleiman, J.-P. Serre. Providence, PI: Amer. Math. Soc., 1994

  37. Jannsen, U., Kleiman, S., Serre, J.-P.: Motives. Proc. Symp. Pure Math. 55, Providence, PI: Amer. Math. Soc., 1994

  38. Weil A.: Number of solutions of equations in finite fields. Bull. Am. Math. Soc. 55, 497–508 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  39. Grothendieck, A.: Formulé de Lefschetz ét rationalité de fonction de L. Séminaire Bourbaki 279, 1–15 (1964/1965)

    Google Scholar 

  40. Deligne P.: La conjecture de Weil I. Publ. Math. IHES 43, 273–307 (1974)

    MathSciNet  Google Scholar 

  41. Schmidt F.K.: Analytische Zahlentheorie in Körpern der Charakteristik p. Math. Z. 33, 1–32 (1931)

    Article  MathSciNet  Google Scholar 

  42. Hasse H.: Beweis des Analogons der Riemannschen Vermutung für die Artinschen und F.K. Schmidtschen Kongruenzzetafunktionen in gewissen elliptischen Fällen. Vorläufige Mitteilung. Nachrichten v.d. Gesellschaft d. Wiss. zu Göttingen I 42, 253–262 (1933)

    Google Scholar 

  43. Hasse H.: Über die Kongruenzzetafunktionen. Unter Benutzung von Mitteilungen von Prof. Dr. F.K. Schmidt und Prof. Dr. E. Artin. S. Ber. Preuß. Akad. Wiss. H. 17, 250–263 (1934)

    Google Scholar 

  44. Dwork B.: On the rationality of the zeta function of an algebraic variety. Amer. J. Math. 82, 631–648 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shioda, T.: Some observations on Jacobi sums. In: Galois Representations and Arithmetic Geometry, ed., Y. Ihara, Advanced Studies in Pure Mathematics 12, Tokyo: Math. Soc. Japan, 1987

  46. Gouvea F., Yui N.: Arithmetic of diagonal hypersurfaces over finite fields. London Math. Soc., London (1995)

    Book  MATH  Google Scholar 

  47. Kadir, S., Yui, N.: Motives and mirror symmetry for Calabi-Yau orbifolds. In: Modular Forms and String Duality. Fields Inst. Commun. Providence, PI: Amer. Math. Soc. Felds. Dist. 54, 2008, pp. 3–46

  48. Hunt B., Schimmrigk R.: Heterotic gauge structure of type II K3 fibrations. Phys. Lett. B381, 427–436 (1996)

    MathSciNet  ADS  Google Scholar 

  49. Hunt B., Schimmrigk R.: K3 Fibered Calabi-Yau threefolds I: The twist map. Int. J. Math. 10, 833–866 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Voisin C.: Miroirs ét involutions sur les surfaces K3. Journées de Géométrie Algébrique d’Orsay, Astérisque 218, 273–323 (1993)

    MathSciNet  Google Scholar 

  51. Borcea, C.: K3 Surfaces with involutions and mirror pairs of Calabi-Yau manifolds. In: Mirror Symmetry, II, AMS/IP Stud. Adv. Math. 1, Providence, RI: Amer. Math. Soc., 1997, pp. 717–743

  52. Weil A.: Jacobi sums as “Grössencharaktere”. Trans. Amer. Math. Soc. 73, 487–495 (1952)

    MathSciNet  MATH  Google Scholar 

  53. Dummit D., Kisilvesky H., McKay J.: Multiplicative properties of η−functions. Contemp. Math. 45, 89–98 (1985)

    Article  Google Scholar 

  54. Martin Y.: Multiplicative η−Quotients. Trans. Amer. Math. Soc. 348, 4825–4856 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  55. Schimmrigk R.: Calabi-Yau arithmetic and rational conformal field theories. J. Geom. Phys. 44, 555–569 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Schimmrigk R.: A modularity test of elliptic mirror symmetry Phys. Lett. B655, 84–89 (2007)

    MathSciNet  ADS  Google Scholar 

  57. Lynker M., Schimmrigk R., Stewart S.: Complex multiplication of exactly solvable Calabi-Yau varieties. Nucl. Phys. B700, 463–489 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  58. Shimura G.: Introduction to the arithmetic theory of automorphic functions. Princeton UP, Princeton, NJ (1971)

    MATH  Google Scholar 

  59. Anderson G.W.: Cyclotomy and an extension of the Taniyama group. Compositio Math. 57, 153–217 (1986)

    MathSciNet  MATH  Google Scholar 

  60. Shioda T., Katsura T.: On Fermat varieties. Tohoku Math. J. 31, 97–115 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  61. Deligne, P.: Hodge cycles on abelian varieties. In: Hodge Cycles, Motives, and Shimura Varieties, eds., P. Deligne, J.S. Milne, A. Ogus, K.-y. Shih, LNM 900, Berlin-Heidelberg-New York: Springer Verlag, 1982

  62. Gross, B.: On the periods of abelian integrals and a formula of Chowla and Selberg. Invent. Math. 45, 193–211, (with an appendix by D.E. Rohrlich)

  63. Kazama Y., Suzuki H.: New N = 2 superconformal field theories and superstring compactification. Nucl. Phys. B321, 232 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  64. Candelas, P., de la Ossa, X., Rodriguez-Villegas, F.: Calabi-Yau manifolds over finite fields I. http://arXiv.org/abs/hep-th/0012233/v1, 2000

  65. Candelas, P., de la Ossa, X., Rodriguez-Villegas, F.: Calabi-Yau manifolds over finite fields II. In: Calabi-Yau Varieties and Mirror Symmetry. Fields Inst. Commun., 38, Providence, PI: Amer. Math. Soc., 2003, pp. 121–157

  66. Kadir, S.N.: The arithmetic of Calabi-Yau manifolds and mirror symmetry. Oxford Univ. Dphil thesis, 2004, available at http://arXiv.org/abshep-th/0409202v1, 2004 Arithmetic mirror symmetry for a two-parameter family of Calabi-Yau manifolds. In: Mirror Symmetry V, AMS/IP Stud. Adv. Math. 38. Providence, PI: Amer. Math. Soc., 2006, pp. 35–86

  67. Candelas P., Dale A., Lütken C.A., Schimmrigk R.: Complete intersection Calabi-Yau manifolds. Nucl. Phys. B298, 493–525 (1988)

    Article  ADS  Google Scholar 

  68. Candelas P., Green P., Hübsch T.: Rolling among Calabi-Yau vacua. Nucl. Phys. B330, 49–102 (1990)

    Article  ADS  Google Scholar 

  69. Kadir, S.N., Lynker, M., Schimmrigk, R.: Work in progress

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Schimmrigk.

Additional information

Communicated by A. Kapustin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schimmrigk, R. Emergent Spacetime from Modular Motives. Commun. Math. Phys. 303, 1–30 (2011). https://doi.org/10.1007/s00220-010-1179-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1179-4

Keywords

Navigation