Skip to main content
Log in

Localized Pressure and Equilibrium States

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce the notion of localized topological pressure for continuous maps on compact metric spaces. The localized pressure of a continuous potential \(\varphi \) is computed by considering only those \((n,\epsilon )\)-separated sets whose statistical sums with respect to an m-dimensional potential \(\Phi \) are “close” to a given value \(w\in {\mathbb R}^m\). We then establish for several classes of systems and potentials \(\varphi \) and \(\Phi \) a local version of the variational principle. We also construct examples showing that the assumptions in the localized variational principle are fairly sharp. Next, we study localized equilibrium states and show that even in the case of subshifts of finite type and Hölder continuous potentials, there are several new phenomena that do not occur in the theory of classical equilibrium states. In particular, we construct an example with infinitely many ergodic localized equilibrium states. We also show that for systems with strong thermodynamic properties and w in the interior of the rotation set of \(\Phi \) there is at least one and at most finitely many localized equilibrium states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barreira, L., Gelfert, K.: Dimension estimates in smooth dynamics: a survey of recent results. Ergod. Theory Dyn. Syst. 31, 641–671 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barreira, L., Saussol, B., Schmeling, J.: Higher-dimensional multifractal analysis. J. Math. Pures Appl. 9, 67–91 (2002)

    Article  MathSciNet  Google Scholar 

  3. Barreira, L., Saussol, B.: Variational principles and mixed multifractal spectra. Trans. Am. Math. Soc. 353, 3919–3944 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bowen, R.: Lecture Notes in Mathematics. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, vol. 470. Springer, Berlin (1975)

    Google Scholar 

  5. Bowen, R.: Hausdorff dimension of quasicircles. Inst. Hautes Études Sci. Publ. Math. 50, 11–25 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bowen, R.: Some systems with unique equilibrium states. Math. Syst. Theory 8, 193–202 (1974/75)

  7. Climenhaga, V.: Topological pressure of simultaneous level sets. Nonlinearity 26, 241–268 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Climenhaga, V., Thompson, D.J.: Equilibrium states beyond specification and the Bowen property. J. Lond. Math. Soc. 87(2), 401–427 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Haydn, N., Ruelle, D.: Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification. Commun. Math. Phys. 148, 155–167 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Feng, D.J., Lau, K.S., Wu, J.: Ergodic limits on the conformal repeller. Adv. Math. 169, 58–91 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fisher, T., Diaz, L., Pacifico, M., Vieitez, J.: Entropy-expansiveness for partially hyperbolic diffeomorphisms. Discret. Contin. Dyn. Syst. 32, 4195–4207 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, L., Lv, J., Zhou, L.: Definition of measure-theoretic pressure using spanning sets. Acta Math. Sinica (English Series) 20, 709–718 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jenkinson, O.: Rotation, entropy, and equilibrium states. Trans. Am. Math. Soc. 353, 3713–3739 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Katok, A.: Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math., Inst. Hautes Étud. Sci. 51, 137–173 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems. With a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge (1995)

  16. Keller, G.: London Mathematical Society Student Texts. Equilibrium states in ergodic theory, vol. 42, p. x+178. Cambridge University Press, Cambridge (1998)

  17. Kucherenko, T., Wolf, C.: Geometry and entropy of generalized rotation sets. Isr. J. Math. 2014, 791–829 (1999)

    MathSciNet  Google Scholar 

  18. Manning, A., McCluskey, H.: Hausdorff dimension for horseshoes. Ergod. Theory Dyn. Syst. 3, 251–260 (1983)

    MathSciNet  MATH  Google Scholar 

  19. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  20. Misiurewicz, M.: Rotation Theory, Misiurewicz’s webpage

  21. Newhouse, S.: Continuity properties of entropy. Ann. Math. 129(2), 215–235 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pesin, Y.: Chicago Lectures in Mathematics. Dimension theory in dynamical systems: contemporary views and applications. Chicago University Press, Chicago (1997)

    Google Scholar 

  23. Pesin, Ya., Pitskel, B.: Topological pressure and the variational principle for noncompact sets. Funktsional. Anal. i Prilozhen. 18, 50–63 (1984). (Russian)

    Article  MathSciNet  Google Scholar 

  24. Pfister, C.-E., Sullivan, W.G.: On the topological entropy of saturated sets. Ergod. Theory Dyn. Syst. 2, 929–956 (2007)

    Article  MathSciNet  Google Scholar 

  25. Poincaré, H.: Sur les cousbes définies par les équations différentielles, Euvres Complètes, tome 1. Gauthier-Villars, Paris (1952)

    Google Scholar 

  26. Przytycki, F., Urbanski, M.: London Mathematical Society Lecture Note Series. Conformal fractals: ergodic theory methods, vol. 371 (x+354 pp). Cambridge University Press, Cambridge (2010)

  27. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  28. Ruelle, D.: Repellers for real analytic maps. Ergod. Theory Dyn. Syst. 2, 99–107 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ruelle, D.: Thermodynamic Formalism. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  30. Takens, F., Verbitskiy, E.: On the variational principle for the topological entropy of certain non-compact sets. Ergod. Theory Dyn. Syst. 23, 317–348 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Thompson, D.: A variational principle for topological pressure for certain non-compact sets. J. Lond. Math. Soc. 81, 585–602 (2009)

    Article  Google Scholar 

  32. Thompson, D.: A thermodynamic definition of topological pressure for non-compact sets. Ergod. Theory Dyn. Syst. 31, 527–547 (2011)

    Article  MATH  Google Scholar 

  33. Walters, P.: Graduate Texts in Mathematics. An introduction to ergodic theory, vol. 79. Springer, New York (1981)

  34. Ziemian, K.: Rotation sets for subshifts of finite type. Fund. Math. 146, 189–201 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants from the PSC-CUNY (TRADA-45-278 to Tamara Kucherenko), (TRADA-45-356 to Christian Wolf) and by a grant from the Simons Foundation (#209846 to Christian Wolf).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wolf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucherenko, T., Wolf, C. Localized Pressure and Equilibrium States. J Stat Phys 160, 1529–1544 (2015). https://doi.org/10.1007/s10955-015-1289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1289-7

Keywords

Navigation