Skip to main content
Log in

A Note on Dimer Models and McKay Quivers

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give one formulation of a procedure of Hanany and Vegh (J High Energy Phys 0710(029):35, 2007) which takes a lattice polygon as an input and produces a set of isoradial dimer models. We study the case of lattice triangles in detail and discuss the relation with coamoebas following Feng et al. (Adv Theor Math Phys 12(3):489–545, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benvenuti S., Pando Zayas L.A., Tachikawa Y.: Triangle anomalies from Einstein manifolds. Adv. Theor. Math. Phys. 10(3), 395–432 (2006)

    MATH  MathSciNet  Google Scholar 

  2. Broomhead, N.: Dimer models and Calabi-Yau algebras. http://arxiv.org/abs/0901.4662v1[math.AG], 2009

  3. Butti, A., Zaffaroni, A.: R-charges from toric diagrams and the equivalence of a-maximization and Z-minimization. J. High Energy Phys. 0511, 019, 42 pp. (electronic) (2005)

  4. Butti A., Zaffaroni A.: From toric geometry to quiver gauge theory: the equivalence of a-maximization and Z-minimization. Fortschr. Phys. 54(5–6), 309–316 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Davison, B.: Consistency conditions for brane tilings. http://arxiv.org/abs/0812.4185v2[math.AG], 2009

  6. Duffin R.J.: Potential theory on a rhombic lattice. J. Comb. Th. 5, 258–272 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feng B., He Y.-H., Kennaway K.D., Vafa C.: Dimer models from mirror symmetry and quivering amoebae. Adv. Theor. Math. Phys. 12(3), 489–545 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Fowler R.H., Rushbrooke G.S.: An attempt to extend the statistical theory of perfect solutions. Trans. Faraday Soc. 33, 1272–1294 (1937)

    Article  Google Scholar 

  9. Franco, S., Hanany, A., Martelli, D., Sparks, J., Vegh, D., Wecht, B.: Gauge theories from toric geometry and brane tilings. J. High Energy Phys. 0601, 128, 40 pp. (electronic) (2006)

  10. Franco, S., Hanany, A., Vegh, D., Wecht, B., Kennaway, K.D.: Brane dimers and quiver gauge theories. J. High Energy Phys. 0601, 096, 48 pp. (electronic) (2006)

  11. Franco, S., Vegh, D.: Moduli spaces of gauge theories from dimer models: proof of the correspondence. J. High Energy Phys. 0611, 054, 26 pp. (electronic) (2006)

  12. Ginzburg, V.: Calabi-Yau algebras. http://arxiv.org.abs/math/0612139v3[math.AG], 2007

  13. Gulotta, D.R.: Properly ordered dimers, R-charges, and an efficient inverse algorithm. J. High Energy Phys. 0810, 014, 31 pp (2008)

    Google Scholar 

  14. Hanany, A., Kennaway, K.D.: Dimer models and toric diagrams. http://arxiv.org/abs/hep-th/0503149v2, 2005

  15. Hanany, A., Vegh, D.: Quivers, tilings, branes and rhombi. J. High Energy Phys. 0710, 029, 35 (2007)

    Google Scholar 

  16. Ishii, A., Ueda, K.: Dimer models and the special McKay correspondence. http://arxiv.org/abs/0905.0059v1[math.AG], 2009

  17. Ishii, A., Ueda, K.: On moduli spaces of quiver representations associated with dimer models. In: Higher dimensional algebraic varieties and vector bundles, RIMS Kôkyûroku Bessatsu, B9. Kyoto: Res. Inst. Math. Sci. (RIMS), 2008, pp. 127–141

  18. Kasteleyn P.W.: Dimer statistics and phase transitions. J. Math. Phys. 4, 287–293 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  19. Kato, A.: Zonotopes and four-dimensional superconformal field theories. J. High Energy Phys. 0706, 037, 30 pp. (electronic) (2007)

  20. Kenyon, R.: An introduction to the dimer model. In: School and Conference on Probability Theory, ICTP Lect. Notes, XVII (electronic). Trieste: Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 267–304

  21. Kenyon R., Okounkov A., Sheffield S.: Dimers and amoebae. Ann. of Math. (2) 163(3), 1019–1056 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kenyon R., Schlenker J.-M.: Rhombic embeddings of planar quad-graphs. Trans. Amer. Math. Soc. 357(9), 3443–3458 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lee, S., Rey, S.-J.: Comments on anomalies and charges of toric-quiver duals. J. High Energy Phys. 0603, 068, 21 pp. (electronic) (2006)

  24. Martelli D., Sparks J., Yau S.-T.: The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds. Commun. Math. Phys. 268(1), 39–65 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Martelli D., Sparks J., Yau S.-T.: Sasaki-Einstein manifolds and volume minimisation. Commun. Math. Phys. 280(3), 611–673 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Mercat C.: Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218(1), 177–216 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Mozgovoy, S., Reineke, M.: On the noncommutative Donaldson-Thomas invariants arising from brane tilings. http://arxiv.org/abs/0809.0117v2[math.AG], 2008

  28. Nakamura I.: Hilbert schemes of abelian group orbits. J. Alg. Geom. 10(4), 757–779 (2001)

    MATH  Google Scholar 

  29. Okounkov, A., Reshetikhin, N., Vafa, C.: Quantum Calabi-Yau and classical crystals. In The unity of mathematics, Volume 244 of Progr. Math., Boston, MA: Birkhäuser Boston, 2006, pp. 597–618

  30. Ooguri, H., Yamazaki, H.: Emergent Calabi-Yau geometry. Phys. Rev. Lett. 102(16), 161601, 4 (2009)

    Google Scholar 

  31. Reid, M.: Mckay correspondence. http://arxiv.org/abs/alg-geom/9702016v3, 1997

  32. Stienstra, J.: Computation of principal A-determinants through dimer dynamics. http://arxiv.org/abs/0901.3681v1[math.AG], 2009

  33. Stienstra, J.: Hypergeometric systems in two variables, quivers, dimers and dessins d’enfants. In Modular forms and string duality, Volume 54 of Fields Inst. Commun., Providence, RI: Amer. Math. Soc., 2008, pp. 125–161

  34. Ueda, K., Yamazaki, M.: Homological mirror symmetry for toric orbifolds of toric del Pezzo surfaces. http://arxiv.org/abs/math/0703267v2[math.AG], 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazushi Ueda.

Additional information

Communicated by N.A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueda, K., Yamazaki, M. A Note on Dimer Models and McKay Quivers. Commun. Math. Phys. 301, 723–747 (2011). https://doi.org/10.1007/s00220-010-1101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1101-0

Keywords

Navigation