Skip to main content
Log in

Continuous Spectrum of Automorphism Groups and the Infraparticle Problem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper presents a general framework for a refined spectral analysis of a group of isometries acting on a Banach space, which extends the spectral theory of Arveson. The concept of a continuous Arveson spectrum is introduced and the corresponding spectral subspace is defined. The absolutely continuous and singular-continuous parts of this spectrum are specified. Conditions are given, in terms of the transposed action of the group of isometries, which guarantee that the pure-point and continuous subspaces span the entire Banach space. In the case of a unitarily implemented group of automorphisms, acting on a C*-algebra, relations between the continuous spectrum of the automorphisms and the spectrum of the implementing group of unitaries are found. The group of spacetime translation automorphisms in quantum field theory is analyzed in detail. In particular, it is shown that the structure of its continuous spectrum is relevant to the problem of existence of (infra-)particles in a given theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki H.: Mathematical Theory of Quantum Fields. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  2. Araki H., Haag R.: Collision cross sections in terms of local observables. Commun. Math. Phys. 4, 77–91 (1967)

    Article  MathSciNet  ADS  Google Scholar 

  3. Arendt W., Batty C.J.K.: Almost periodic solutions of first and second order Cauchy problems. J. Diff. Eqs. 137, 363–383 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arveson W.: On groups of automorphisms of operator algebras. J. Funct. Anal. 15, 217–243 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arveson, W.: The harmonic analysis of automorphism groups. In: Operator Algebras and Applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math. 38, Providence, RI: Amer. Math. Soc., 1982, pp. 199–269

  6. Baskakov A.G.: Spectral criteria for almost periodicity of solutions of functional equations. Math. Notes 24, 606–612 (1978)

    MathSciNet  Google Scholar 

  7. Borchers H.J., Haag R., Schroer B.: The vacuum state in quantum field theory. Nuovo Cimento 29, 148–162 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bostelmann H.: Phase space properties and the short distance structure in quantum field theory. J. Math. Phys. 46, 052301–052318 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  9. Buchholz D.: The physical state space of quantum electrodynamics. Commun. Math. Phys. 85, 49–71 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Buchholz D.: Gauss’ law and the infraparticle problem. Phys. Lett. B 174, 331–334 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  11. Buchholz D.: Harmonic analysis of local operators. Commun. Math. Phys. 129, 631–641 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Buchholz, D.: On the manifestations of particles. In: Mathematical Physics Towards the 21st Century. Proceedings Beer-Sheva 1993, Sen, R.N., Gersten, A. Eds., Ben-Gurion University of the Negev Press 1994, pp. 177–202

  13. Buchholz D., Fredenhagen K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Buchholz D., Porrmann M., Stein U.: Dirac versus Wigner: Towards a universal particle concept in quantum field theory. Phys. Lett. B 267, 377–381 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  15. Buchholz D., Wanzenberg R.: The realm of the vacuum. Commun. Math. Phys. 143, 577–589 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Chen T., Fröhlich J., Pizzo A.: Infraparticle scattering states in non-relativistic QED: I. The Bloch-Nordsieck paradigm. Commun. Math. Phys. 294, 761–825 (2010)

    Article  ADS  Google Scholar 

  17. Dereziński J.: Asymptotic completeness of long-range N-body quantum systems. Ann. of Math. 138, 427–476 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dereziński J., Gerard C.: Spectral and scattering theory of spatially cut-off \({P(\phi)_2}\) Hamiltonians. Commun. Math. Phys. 213, 39–125 (2000)

    Article  MATH  ADS  Google Scholar 

  19. Dybalski W.: Haag-Ruelle scattering theory in presence of massless particles. Lett. Math. Phys. 72, 27–38 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Dybalski W.: A sharpened nuclearity condition and the uniqueness of the vacuum in QFT. Commun. Math. Phys. 283, 523–542 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Dybalski, W.: Spectral theory of automorphism groups and particle structures in quantum field theory. PhD thesis, Universität Göttingen (2008). Preprint: http://webdoc.sub.gwdg.de/diss/2009/dybalski/, 2009

  22. Dybalski W.: Coincidence arrangements of local observables and uniqueness of the vacuum in QFT. J. Phys. A 42, 365201–365223 (2009)

    Article  MathSciNet  Google Scholar 

  23. Enss V.: Asymptotic completeness for quantum mechanical potential scattering. Commun. Math. Phys. 61, 285–291 (1978)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Evans D.: On the spectrum of a one parameter strongly continuous representation. Math. Scand. 39, 80–82 (1976)

    MATH  MathSciNet  Google Scholar 

  25. Exel R.: Unconditional integrability for dual actions. Bol. Soc. Brasil. Mat. (N.S.) 30, 99–124 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Exel R.: Morita-Rieffel equivalence and spectral theory for integrable automorphism groups of C*-algebras. J. Funct. Anal. 172, 404–465 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Fröhlich J., Morchio G., Strocchi F.: Infrared problem and spontaneous breaking of the Lorentz group in QED. Phys. Lett. B 89, 61–64 (1979)

    Article  ADS  Google Scholar 

  28. Fröhlich J., Griesemer M., Schlein B.: Asymptotic completeness for Compton scattering. Commun. Math. Phys. 252, 415–476 (2004)

    Article  MATH  ADS  Google Scholar 

  29. Fredenhagen K., Hertel J.: Local algebras of observables and pointlike localized fields. Commun. Math. Phys. 80, 555–561 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Graf G.M.: Asymptotic completeness for N-body short-range quantum systems: a new proof. Commun. Math. Phys. 132, 73–101 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Haag R.: Local Quantum Physics. Springer, Berlin-Heidelbreg-New York (1996)

    MATH  Google Scholar 

  32. Herdegen A.: Infrared problem and spatially local observables in electrodynamics. Ann. Henri Poincaré 9, 373–401 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Huang S.-Z.: Completeness of eigenvectors of group representations of operators whose Arveson spectrum is scattered. Proc. Amer. Math. Soc. 127, 1473–1482 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Jarchow, H.: Locally Convex Spaces. Stuttgart: B. G. Teubner, 1981

  35. Johannsen, K.: Teilchenaspekte im Schroermodell. Diplomarbeit, Universität Hamburg, 1991

  36. Jorgensen P.E.T.: Spectral theory of one-parameter groups of isometries. J. Math. Anal. Appl. 168, 131–146 (1992)

    Article  MathSciNet  Google Scholar 

  37. Jorgensen P.E.T.: Spectral theory for infinitesimal generators of one-parameter groups of isometries: The mini-max principle and compact perturbations. J. Math. Anal. Appl. 90, 347–370 (1982)

    Article  MathSciNet  Google Scholar 

  38. Lechner G.: Construction of quantum field theories with factorizing S-matrices. Commun. Math. Phys. 277, 821–860 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Longo, R.: Some aspects of C*-dynamics. In: Algèbres d’opérateurs et leur applications en physique mathèmatique. Colloques Internationaux du C.N.R.S. 274, Paris: CNRS, 1979, pp. 261–273

  40. Meyer R.: Generalized fixed point algebras and square-integrable group actions. J. Funct. Anal. 186, 167–195 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Pizzo A.: Scattering of an infraparticle: the one particle sector in Nelson’s massless models. Ann. Henri Poincaré 6, 553–606 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Pedersen G.K.: C*-Algebras and Their Automorphism Groups. Academic Press, London-New York (1979)

    Google Scholar 

  43. Porrmann M.: Particle weights and their disintegration I. Commun. Math. Phys. 248, 269–304 (2004)

    MATH  MathSciNet  ADS  Google Scholar 

  44. Porrmann M.: Particle weights and their disintegration II. Commun. Math. Phys. 248, 305–333 (2004)

    MATH  MathSciNet  ADS  Google Scholar 

  45. Reed M., Simon B.: Methods of Modern Mathematical Physics. Part I: Functional Analysis. Academic Press, London-New York (1972)

    Google Scholar 

  46. Rejzner, K.: Asymptotic Algebra of Fields in Quantum Electrodynamics. Master’s thesis, University of Cracow, 2009

  47. Rieffel, M.A.: Proper actions of groups on C*-algebras. In: Mappings of Operator Algebras (Philadelphia, PA,1988), Boston, MA: Birkhäuser Boston, 1990, pp. 141–182

  48. Rudin W.: Functional Analysis. McGraw-Hill, New York (1977)

    Google Scholar 

  49. Schroer B.: Infrateilchen in der Quantenfeldtheorie. Fortschr. Phys. 11, 1–32 (1963)

    Article  MathSciNet  Google Scholar 

  50. Sigal I.M., Soffer A.: The N-particle scattering problem: asymptotic completeness for short-range systems. Ann. of Math. 126, 35–108 (1987)

    Article  MathSciNet  Google Scholar 

  51. Spohn H.: Dynamics of Charged Particles and Their Radiation Field. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  52. Wigner E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Dybalski.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dybalski, W. Continuous Spectrum of Automorphism Groups and the Infraparticle Problem. Commun. Math. Phys. 300, 273–299 (2010). https://doi.org/10.1007/s00220-010-1091-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1091-y

Keywords

Navigation