Skip to main content
Log in

Global Solution to the Three-Dimensional Incompressible Flow of Liquid Crystals

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The equations for the three-dimensional incompressible flow of liquid crystals are considered in a smooth bounded domain. The existence and uniqueness of the global strong solution with small initial data are established. It is also proved that when the strong solution exists, all the global weak solutions constructed in [16] must be equal to the unique strong solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H.: Linear and Quasilinear Parabolic Problems. Vol. I. Abstract linear theory. Birkhúser Boston, Inc., Boston MA (1995)

    Google Scholar 

  2. Bergh J., Löfström J.: Interpolation Spaces. An Introduction. . Springer-Verlag, Grundlehren der Mathematischen Wissenschaften, Berlin-New York (1976)

    Google Scholar 

  3. Chandrasekhar S.: Liquid Crystals 2nd ed. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  4. Danchin R.: Density-dependent incompressible fluids in bounded domains. J. Math. Fluid Mech. 8, 333–381 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. de Gennes P.G., Prost J.: The Physics of Liquid Crystals. Oxford University Press, New York (1993)

    Google Scholar 

  6. Desjardins B.: Regularity of weak solutions of the compressible isentropic Navier-Stokes equations. Comm. Part. Diff. Eqs. 22, 977–1008 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ericksen J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheology 5, 23–34 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  8. Ericksen J.L.: Continuum theory of nematic liquid crystals. Res. Mechanica 21, 381–392 (1987)

    MathSciNet  Google Scholar 

  9. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized steady problems. Springer-Verlag, New York (1994)

    Google Scholar 

  10. Hardt R., Kinderlehrer D.: Mathematical Questions of Liquid Crystal Theory. The IMA Volumes in Mathematics and its Applications 5. Springer-Verlag, New York (1987)

    Google Scholar 

  11. Hardt R., Kinderlehrer D., Lin F.: Existence and partial regularity of static liquid crystal configurations. Commun. Math. Phys. 105, 547–570 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Leslie F.: Some constitutive equations for liquid crystals. Arch. Rat. Mech. Anal. 28, 265–283 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  13. Leslie, F.: Theory of flow phenomenum in liquid crystals. In: The Theory of Liquid Crystals, 4, London-New York: Academic Press, 1979, pp. 1–81

  14. Lin F.-H.: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Commun. Pure. Appl. Math. 42, 789–814 (1989)

    Article  MATH  Google Scholar 

  15. Lin, F.-H.: Mathematics theory of liquid crystals. In: Applied Mathematics at the Turn of the Century, Lecture Notes of the 1993 Summer School, Universidad Complutense de Madrid, Madrid: Editorial Complutense, 1995

  16. Lin F.-H., Liu C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm. Pure Appl. Math. 48, 501–537 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lin F.-H., Liu C.: Partial regularity of the dynamic system modeling the flow of liquid crystals. Disc. Cont. Dyn. Sys. 2, 1–22 (1996)

    MATH  MathSciNet  Google Scholar 

  18. Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible models. Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications. New York: The Clarendon Press/Oxford University Press, 1996

  19. Liu C., Walkington N.J.: Approximation of liquid crystal flow. SIAM J. Numer. Anal. 37, 725–741 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sun H., Liu C.: On energetic variational approaches in modeling the nematic liquid crystal flows. Disc. Contin. Dyn. Syst. 23, 455–475 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehua Wang.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Wang, D. Global Solution to the Three-Dimensional Incompressible Flow of Liquid Crystals. Commun. Math. Phys. 296, 861–880 (2010). https://doi.org/10.1007/s00220-010-1017-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1017-8

Keywords

Navigation