Skip to main content
Log in

A Class of Integrable Flows on the Space of Symmetric Matrices

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For a given skew symmetric real n × n matrix N, the bracket [X, Y] N = XNYYNX defines a Lie algebra structure on the space Sym(n, N) of symmetric n × n real matrices and hence a corresponding Lie-Poisson structure. The purpose of this paper is to investigate the geometry, integrability, and linearizability of the Hamiltonian system \({\dot{X} = [X^2, N]}\), or equivalently in Lax form, the equation \({\dot{X} = [X, XN + NX]}\)on this space along with a detailed study of the Poisson geometry itself. If N has distinct eigenvalues, it is proved that this system is integrable on a generic symplectic leaf of the Lie-Poisson structure of Sym(n, N). This is established by finding another compatible Poisson structure.

If N is invertible, several remarkable identifications can be implemented. First, (Sym(n, N), [·, ·]) is Lie algebra isomorphic with the symplectic Lie algebra \({\mathfrak{sp}(n, N^{-1})}\)associated to the symplectic form on \({\mathbb{R}^n}\)given by N −1. In this case, the system is the reduction of the geodesic flow of the left invariant Frobenius metric on the underlying symplectic group Sp(n, N −1). Second, the trace of the product of matrices defines a non-invariant non-degenerate inner product on Sym(n, N) which identifies it with its dual. Therefore Sym(n, N) carries a natural Lie-Poisson structure as well as a compatible “frozen bracket” structure. The Poisson diffeomorphism from Sym(n, N) to \({\mathfrak{sp}(n, N^{-1})}\)maps our system to a Mischenko-Fomenko system, thereby providing another proof of its integrability if N is invertible with distinct eigenvalues. Third, there is a second ad-invariant inner product on Sym(n, N); using it to identify Sym(n, N) with itself and composing it with the dual of the Lie algebra isomorphism with \({\mathfrak{sp}(n, N^{-1})}\), our system becomes a Mischenko- Fomenko system directly on Sym(n, N).

If N is invertible and has distinct eigenvalues, it is shown that this geodesic flow on Sym(n, N) is linearized on the Prym subvariety of the Jacobian of the spectral curve associated to a Lax pair formulation with parameter of the system. If, on the other hand, N has nullity one and distinct eigenvalues, in spite of the fact that the system is completely integrable, it is shown that the flow does not linearize on the Jacobian of the spectral curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams M.R., Harnad J., Hurturbise J.: Darboux coordinates and Liouville-Arnold integration in loop algebras. Comm. Math. Phys. 155, 385–413 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Adler M., van Moerbeke P.: Linearization of Hamiltonian systems, Jacobi varieties and representation theory. Adv. Math. 38, 318–379 (1980)

    Article  MATH  Google Scholar 

  3. Adler, M., van Moerbeke, P., Vanhaecke, P.: Algebraic Integrability, Painlevé Geometry and Lie algebras, Volume 47 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Berlin-Heidelberg-New York: Springer-Verlag, 2004

  4. Beauville A.: Jacobiennes des courbes spectrales et systèmes hamiltoniens completement integrables. Acta Math. 164, 211–235 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bloch A.M., Iserles A.: On an isospectral Lie–Poisson system and its Lie algebra. Found. of Comput. Math. 6, 121–144 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bolsinov A.V.: Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution. Math. USSR. Izv. 38(1), 69–90 (1992)

    Article  MathSciNet  Google Scholar 

  7. Bolsinov A.V., Borisov A.V.: Compatible Poisson brackets on Lie algebras. Mat. Zametki 72(1), 11–34 (2002)

    MathSciNet  Google Scholar 

  8. Deift P., Li L.C., Tomei C.: Matrix factorizations and integrable systems. Comm. Pure Appl. Math. XLII, 443–521 (1989)

    Article  MathSciNet  Google Scholar 

  9. Dubrovin, B.A., Novikov, S.P., Krichever, I.M.: Integrable Systems, Encyclopaedia of Mathematical Sciences. 4, Berlin: Springer-Verlag, 1989

  10. Gavrilov L.: Generalized Jacobians of spectral curves and completely integrable systems. Math. Z. 230, 487–508 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Griffiths P.: Linearizing flows and a cohomological interpretation of Lax equations. Amer. J. Math. 107, 1445–1483 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Krichever I.M.: Methods of algebraic geometry in the theory of nonlinear equations. Russ. Math. Surv. 32, 185–213 (1977)

    Article  MATH  Google Scholar 

  13. Krichever I.M., Novikov S.P.: Holomorphich bundles over algebraic curves and nonlinear equations. Russ. Math. Surv. 35, 53–79 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Li L.-C., Tomei C.: The complete integrability of a Lie–Poisson system proposed by Bloch and Iserles. Intern. Math. Res. Notes 64949, 1–19 (2006)

    Google Scholar 

  15. Manakov S.V.: Note on the integration of Euler’s equations of the dynamics of an n-dimensional rigid body. Funct. Anal. Appl. 10, 328–329 (1976)

    Article  MathSciNet  Google Scholar 

  16. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Volume 17 of Texts in Applied Mathematics; Second Edition, second printing, Berlin-Heidelberg-New York: Springer-Verlag, 2003

  17. Meshcheryakov M.V.: A characterisitic property of the inertial tensor of a multidimensional solid body. Russ. Math. Surv. 38(5), 201–202 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mikhailov A.V., Sokolov V.V.: Integrable ODEs on associative algebras. Commun. Math. Phys. 211(1), 231–251 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Mishchenko A.S., Fomenko A.T.: On the integration of the Euler equations on semisimple Lie algebras. Sov. Math. Dokl. 17, 1591–1593 (1976)

    MATH  Google Scholar 

  20. Mischenko A.S., Fomenko A.T.: Euler equations on finite-dimensional Lie groups. Izv. AN SSSR 42(2), 396–415 (1978)

    Google Scholar 

  21. Mischenko, A.S., Fomenko, A.T.: Integration of Euler equations on semisimple Lie algebras. (In Russian), Trudy Sem. po Vekt. i Tenz. Analizu 19, Moscow MGU, 3–94 (1979)

  22. Morosi C., Pizzocchero L.: On the Euler equation: bi-H amiltonian structure and integrals in involution. Lett. Math. Phys. 37, 117–135 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Mumford, D.: Tata Lectures on Theta. II. Volume 43 of Progr. Math., Boston, MA: Birkhäuser, Boston, 1984

  24. Odesskii A.V., Sokolov V.V.: Integrable matrix equations related to pairs of compatible associative algebras. J. Phys. A 39(40), 12447–12456 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ratiu, T.S.: Involution theorems. In: Kaiser, G., Marsden, J. eds., Geometric Methods in Mathematical Physics, Volume 775 of Springer Lecture Notes, Berlin-Heidelberg-New York: Springer, 1980 pp. 219–257

  26. Serre J.P.: Groupes Algebriques et Corps de Classes. Hermann, Paris (1959)

    MATH  Google Scholar 

  27. Trofimov, V.V., Fomenko, A.: Algebra and geometry of integrable Hamiltonian differential equations. In: Russian, Moskva, Faktorial, 1995

  28. Vanhaecke P.: Integrable systems and symmetric products of curves. Math. Z. 227(1), 93–127 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Vanhaecke, P.: Integrable Systems in The Realm of Algebraic Geometry, Second edition. Volume 1638 of Lecture Notes in Mathematics, Berlin-Heidelberg-New York: Springer-Verlag, 2001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Bloch.

Additional information

Communicated by L. Takhtajan

Research partially supported by NSF grants CMS-0408542 and DMS-0604307.

Research partially supported by the Swiss SCOPES grant IB7320-110721/1, 2005-2008, and MEdC Contract 2-CEx 06-11-22/25.07.2006.

Research partially supported by the California Institute of Technology and NSF-ITR Grant ACI-0204932.

Research partially supported by the Swiss NSF and the Swiss SCOPES grant IB7320-110721/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloch, A.M., Brînzănescu, V., Iserles, A. et al. A Class of Integrable Flows on the Space of Symmetric Matrices. Commun. Math. Phys. 290, 399–435 (2009). https://doi.org/10.1007/s00220-009-0849-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0849-6

Keywords

Navigation