Skip to main content
Log in

On Barnes Beta Distributions and Applications to the Maximum Distribution of the 2D Gaussian Free Field

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A new family of Barnes beta distributions on \((0, \infty )\) is introduced and its infinite divisibility, moment determinacy, scaling, and factorization properties are established. The Morris integral probability distribution is constructed from Barnes beta distributions of types (1, 0) and (2, 2),  and its moment determinacy and involution invariance properties are established. For application, the maximum distributions of the 2D gaussian free field on the unit interval and circle with a non-random logarithmic potential are conjecturally related to the critical Selberg and Morris integral probability distributions, respectively, and expressed in terms of sums of Barnes beta distributions of types (1, 0) and (2, 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We will abbreviate \(\bigl (\mathcal {S}_N \log \Gamma _M\bigr )(q\,|a,\,b)\) to mean the action of \(\mathcal {S}_N\) on \(\log \Gamma _M(x|a),\) i.e. \(\bigl (\mathcal {S}_N \log \Gamma _M(x|a)\bigr )(q\,|\,b).\)

  2. Theorem 6 in [2] shows that the laws of the total mass of the continuous and discrete multiplicative chaos measures are the same provided the \(\varepsilon \) parameter in (76) coincides with the discretization step.

  3. The validity of approximating the finite N quantity with the \(N\rightarrow \infty \) limit is discussed in [14].

  4. As remarked in [21], this procedure only determines the distribution of the maximum up to a constant term.

  5. This restriction is necessary as \(M_{(\tau ,\lambda _1,\lambda _2)}\) is real-valued whereas \(\int _{-\pi }^{\pi } e^{i\psi \frac{\lambda _1-\lambda _2}{2}} \, |1+e^{i\psi }|^{\lambda _1+\lambda _2}\, dM_{\beta }(\psi )\) is not in general, unless \(\lambda _1=\lambda _2.\) The problem of determining the law of \(\int _{-\pi }^{\pi } e^{i\psi \frac{\lambda _1-\lambda _2}{2}} \, |1+e^{i\psi }|^{\lambda _1+\lambda _2}\, dM_{\beta }(\psi )\) for \(\lambda _1\ne \lambda _2\) is left to future research.

References

  1. Bacry, E., Delour, J., Muzy, J.-F.: Multifractal random walk. Phys. Rev. E 64, 026103 (2001)

    Article  ADS  MATH  Google Scholar 

  2. Bacry, E., Muzy, J.-F.: Log-infinitely divisible multifractal random walks. Commun. Math. Phys. 236, 449–475 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Barnes, E.W.: The genesis of the double gamma functions. Proc. Lond. Math. Soc. 1(1), 358–381 (1899)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnes, E.W.: On the theory of the multiple gamma function. Trans. Camb. Philos. Soc. 19, 374–425 (1904)

    Google Scholar 

  5. Biane, P., Pitman, J., Yor, M.: Probability laws related to the Jacobi theta and Riemann zeta functions, and brownian excursions. Bull. Am. Math. Soc. 38, 435–465 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgade, P., Kuan, J.: Strong Szegő asymptotics and zeros of the zeta function. Commun. Pure Appl. Math 67, 1028–1044, arXiv:1203.5328 (corrected version) (2013)

  7. Cao, X., Rosso, A., Santachiara, R.: Extreme value statistics of 2D Gaussian free field: effect of finite domains. J. Phys. A: Math. Theor. 49, 02LT02 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carpentier, D., Le Doussal, P.: Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models. Phys. Rev. E 63, 026110 (2001)

    Article  ADS  Google Scholar 

  9. Chamon, C., Mudry, C., Wen, X.-G.: Localization in two dimensions, Gaussian field theories, and multifractality. Phys. Rev. Lett. 77, 4194 (1996)

    Article  ADS  Google Scholar 

  10. Ding, J., Roy, R., Zeitouni, O.: Convergence of the centered maximum of log-correlated Gaussian fields. arXiv:1503.04588 (2015)

  11. Dufresne, D.: \(G\) distributions and the beta–gamma algebra. Electron. J. Probab. 15, 2163–2199 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185, 333–393 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  14. Fyodorov, Y.V., Bouchaud, J.P.: Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential. J. Phys. A: Math. Theor. 41, 372001 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fyodorov, Y.V., Giraud, O.: High values of disorder-generated multifractals and logarithmically correlated processes. Chaos Solitons Fractals 74, 15–26 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Fyodorov, Y.V., Keating, J.P.: Freezing transitions and extreme values: random matrix theory, \(\zeta (1/2+it),\) and disordered landscapes. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372, 20120503 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Fyodorov, Y.V., Khoruzhenko, B.A., Simm, N.J.: Fractional Brownian motion with Hurst index \(H=0\) and the Gaussian Unitary Ensemble. arXiv:1312.0212 (2015)

  18. Fyodorov, Y.V., Le Doussal, P.: Moments of the position of the maximum for GUE characteristic polynomials and for log-correlated Gaussian processes. J. Stat. Phys. (2016). doi:10.1007/s10955-016-1536-6, 1–51

  19. Fyodorov, Y.V., Le Doussal, P., Rosso, A.: Statistical mechanics of logarithmic REM: duality, freezing and extreme value statistics of \(1/f\) noises generated by gaussian free fields. J. Stat. Mech. Theory Exp. 2009(10), P10005 (2009)

    Article  MathSciNet  Google Scholar 

  20. Fyodorov, Y.V., Le Doussal, P., Rosso, A.: Counting function fluctuations and extreme value threshold in multifractal patterns: the case study of an ideal \(1/f\) noise. J. Stat. Phys. 149, 898–920 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Fyodorov, Y.V., Simm, N.J.: On the distribution of maximum value of the characteristic polynomial of GUE random matrices. arXiv:1503.07110 (2015)

  22. Hughes, C.P., Keating, J.P., O’Connell, N.: On the characteristic polynomial of a random unitary matrix. Commun. Math. Phys. 220, 429–451 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Jacod, J., Kowalski, E., Nikeghbali, A.: Mod-gaussian convergence: new limit theorems in probability and number theory. Forum Math. 23, 835–873 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kahane, J.-P.: Positive martingales and random measures. Chin. Ann. Math. Ser. B 8, 1–12 (1987)

    MathSciNet  MATH  Google Scholar 

  25. Kurokawa, N., Koyama, S.: Multiple sine functions. Forum Math. 15, 839–876 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuznetsov, A.: On extrema of stable processes. Ann. Probab. 39, 1027–1060 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuznetsov, A., Pardo, J.C.: Fluctuations of stable processes and exponential functionals of hypergeometric Lévy processes. Acta Appl. Math. 123, 113–139 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Letemplier, J., Simon, T.: On the law of homogeneous stable functionals. arXiv:1510.07441 (2015)

  29. Lin, G.D., Stoyanov, J.: Moment determinacy of powers and products of nonnegative random variables. J. Theor. Probab. 28, 1337–1353 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Madaule, T.: Maximum of a log-correlated Gaussian field. arXiv:1307.1365 (2014)

  31. Madaule, T., Rhodes, R., Vargas, V.: Glassy phase and freezing of log-correlated Gaussian potentials. Ann. Appl. Probab. 26, 643–690 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mandelbrot, B.B.: Possible refinement of the log-normal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. In: Rosenblatt, M., Van Atta, C. (eds.) Statistical Models and Turbulence. Lecture Notes in Physics, vol. 12. Springer, New York (1972)

    Chapter  Google Scholar 

  33. Mandelbrot, B.B.: Limit lognormal multifractal measures. In: Gotsman, E.A., et al. (eds.) Frontiers of Physics: Landau Memorial Conference. Pergamon, New York (1990)

    Google Scholar 

  34. Muzy, J.-F., Bacry, E.: Multifractal stationary random measures and multifractal random walks with log-infinitely divisible scaling laws. Phys. Rev. E 66, 056121 (2002)

    Article  ADS  Google Scholar 

  35. Nikeghbali, A., Yor, M.: The Barnes G function and its relations with sums and products of generalized gamma convolutions variables. Electron. Commun. Probab. 14, 396–411 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ostrovsky, D.: Mellin transform of the limit lognormal distribution. Commun. Math. Phys. 288, 287–310 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Ostrovsky, D.: Selberg integral as a meromorphic function. Int. Math. Res. Notices IMRN 17, 3988–4028 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Ostrovsky, D.: Theory of Barnes beta distributions. Electron. Commun. Probab. 18(59), 1–16 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Ostrovsky, D.: On Barnes beta distributions, Selberg integral and Riemann xi. Forum Math. (2014). doi:10.1515/forum-2013-0149

    MathSciNet  MATH  Google Scholar 

  40. Ostrovsky, D.: On Riemann zeroes, lognormal multiplicative chaos, and Selberg integral. Nonlinearity 29, 426–464 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Rajput, B.S., Rosinski, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82, 451–487 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: an overview. Probab. Surv. 11, 315–392 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rodgers, B.: A central limit theorem for the zeroes of the zeta function. Int. J. Number Theory 10, 483–511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ruijsenaars, S.N.M.: On Barnes’ multiple zeta and gamma functions. Adv. Math. 156, 107–132 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shintani, T.: A proof of the classical Kronecker limit formula. Tokyo J. Math. 3, 191–199 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  46. Soshnikov, A.: The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities. Ann. Probab. 28, 1353–1370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Steutel, F.W., van Harn, K.: Infinite Divisibility of Probability Distributions on the Real Line. Marcel Dekker, New York (2004)

    MATH  Google Scholar 

  48. Subag, E., Zeitouni, O.: Freezing and decorated Poisson point processes. Commun. Math. Phys. 337, 55–92 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Webb, C.: The characteristic polynomial of a random unitary matrix and Gaussian multiplicative chaos - The \(L^2\) -phase. Electron. J. Probab. 20(104), 1–21 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author wants to express gratitude to Yan Fyodorov and Nickolas Simm for helpful correspondence relating to ref. [21]. The author is also thankful to the referees for many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Ostrovsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrovsky, D. On Barnes Beta Distributions and Applications to the Maximum Distribution of the 2D Gaussian Free Field. J Stat Phys 164, 1292–1317 (2016). https://doi.org/10.1007/s10955-016-1591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1591-z

Keywords

Navigation