Skip to main content
Log in

Extended Weak Coupling Limit for Pauli-Fierz Operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the weak coupling limit for a quantum system consisting of a small subsystem and reservoirs. It is known rigorously since [10] that the Heisenberg evolution restricted to the small system converges in an appropriate sense to a Markovian semigroup. In the nineties, Accardi, Frigerio and Lu [1] initiated an investigation of the convergence of the unreduced unitary evolution to a singular unitary evolution generated by a Langevin-Schrödinger equation. We present a version of this convergence which is both simpler and stronger than the formulations which we know. Our main result says that in an appropriately understood weak coupling limit the interaction of the small system with environment can be expressed in terms of the so-called quantum white noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi L., Frigerio A. and Lu Y.G. (1990). Weak coupling limit as a quantum functional central limit theorem. Commun. Math. Phys. 131: 537–570

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Accardi L., Gough J. and Lu Y.G. (1995). On the stochastic limit of quantum field theory. Rep. Math. Phys. 36: 155–187

    Article  MATH  MathSciNet  Google Scholar 

  3. Accardi L., Lu Y.G. and Volovich I.V. (2002). Quantum Theory and Its Stochastic Limit. Springer, New York

    MATH  Google Scholar 

  4. Accardi L. and Lu Y.G. (1991). The low-density limit of quantum systems. J. Phys. A: Math. Gen. 24: 3483–3512

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Accardi L., Pechen A.N. and Volovich I.V. (2002). Quantum stochastic equation for the low density limit. J. Phys. A:Math. Gen. 35: 4889–4902

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Attal, S.: Quantum noises. In: Attal, S., Joye, A., Pillet, C.-A. (eds.) Quantum Open Systems II: The Markovian approach, Lecture Notes in Mathematics 1881, Berlin Heidelberg-New York: Springer, 2006

  7. Barchielli, A.: Continual measurements in quantum mechanics. In: Attal, S., Joye, A., Pillet, C.-A. (eds.) Open Quantum Systems III. Recent developments, Lecture Notes in Mathematics 1882, Berlin Heidelberg-New York: Springer, 2006

  8. Bouten L., Maassen H. and Kümmerer B. (2003). Constructing the davies process of resonance fluorescence with quantum stochastic calculus. Optics and Spectroscopy 94: 911–919

    Article  ADS  Google Scholar 

  9. Chebotarev A.M. (1996). Symmetric form of the hudson-parthasarathy stochastic equation. Mat. Zametki [Math. Notes] 60(5): 726–750

    MathSciNet  Google Scholar 

  10. Davies E.B. (1974). Markovian master equations. Commun. Math. Phys. 39: 91–110

    Article  MATH  ADS  Google Scholar 

  11. Dereziński, J.: Introduction to representations of canonical commutation and anticommutation relations. In: Derezinski, J., Siedentop, H. (eds.) Large Coulomb Systems, Lecture Notes in Physics 695, Berlin Heidelberg-New York: Springer, 2006

  12. Dereziński J. and De Roeck W. (2007). Extended weak coupling limit for friedrichs hamiltonians. J. Math. Phys. 48: 012103

    Article  ADS  MathSciNet  Google Scholar 

  13. Dereziński, J., De Roeck, W., Maes, C.: Fluctuations of quantum currents and unravelings of master equations. http://arxiv.org/list/cond-mat/0703594, 2007

  14. Dümcke R. (1983). Convergence of multitime correlation functions in the weak and singular coupling limits. J. Math. Phys. 24(2): 311–315

    Article  ADS  MathSciNet  Google Scholar 

  15. Dümcke R. (1985). The low density limit for an n-level system interacting with a free bose or fermi gas. Commun. Math. Phys. 97: 331–359

    Article  MATH  ADS  Google Scholar 

  16. Frigerio A. and Gorini V. (1984). Diffusion processes, quantum dynamical semigroups and the classical kms condition. J. Math. Phys. 25(4): 1050–1065

    Article  ADS  MathSciNet  Google Scholar 

  17. Gardiner C.W. and Collet M.J. (1985). Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. Phys. Rev. A 31: 3761–3774

    Article  ADS  MathSciNet  Google Scholar 

  18. Gardiner C.W. and Zoller P. (2004). Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods With Applications to Quantum Optics. Springer Verlag, Berlin Heidelberg-New York

    MATH  Google Scholar 

  19. Gough J. (1999). Asymptotic stochastic transformations for non-linear quantum dynamical systems. Rep. Math. Phys. 44(3): 313–338

    Article  MATH  MathSciNet  Google Scholar 

  20. Gough J. (2005). Quantum flows as markovian limit of emission, absorption and scattering interactions. Commun. Math. Phys. 254: 489–512

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Gregoratti M. (2001). The hamiltonian operator associated with some quantum stochastic evolutions. Commun. Math. Phys. 222: 181–200

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Van Hove L. (1955). Quantum-mechanical perturbations giving rise to a statistical transport equation. Physica 21: 517–540

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Hudson R.L. and Parathasaraty K.R. (1984). Quantum ito’s formula and stochastic evolutions. Commun. Math. Phys. 93(3): 301–323

    Article  MATH  ADS  Google Scholar 

  24. Lindblad G. (1975). Completely positive maps and entropy inequalities. Commun. Math. Phys. 40: 147–151

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Maassen, H.: Quantum markov processes on fock spaces described by integral kernels. In: Accardi, L., von Waldenfels, W. (eds.) Quantum Probability and Applications II, Volume 1136 of Lecture Notes in Mathematics. Berlin: Springer, 1984, pp. 361–374

  26. Meyer, P.-A.: Quantum probability for probabilists. Volume 1538 of Lecture Notes in Mathematics. Berlin: Springer, 1995, pp. 384–411

  27. De Roeck W. and Maes C. (2006). Fluctuations of the dissipated heat in a quantum stochastic model. Rev. Math. Phys. 18: 619–653

    Article  MATH  MathSciNet  Google Scholar 

  28. Rudnicki S., Alicki R. and Sadowski S. (1992). The low-density limit in terms of collective squeezed vectors. J. Math. Phys. 33(7): 2607–2617

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Spohn H. (1980). Kinetic equations from hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 52: 569–616

    Article  ADS  MathSciNet  Google Scholar 

  30. von Waldenfels, W.: Ito solution of the linear quantum stochastic differential equation describing light emission and absorption. In: Accardi, L., von Waldenfels, W. (eds.) Quantum Probability and Applications IV, Volume 1055 of Lecture Notes in Mathematics, Berlin: Springer, 1986, pp. 384–411

  31. Waldenfels W. (2005). Symmetric differentiation and hamiltonian of a quantum stochastic process. Inf. Dim. Anal. & Quantum Prob. 8(1): 73–116

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech De Roeck.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dereziński, J., De Roeck, W. Extended Weak Coupling Limit for Pauli-Fierz Operators. Commun. Math. Phys. 279, 1–30 (2008). https://doi.org/10.1007/s00220-008-0419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0419-3

Keywords

Navigation