Skip to main content
Log in

Global Existence and Uniqueness of Solutions to the Maxwell-Schrödinger Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The time local and global well-posedness for the Maxwell-Schrödinger equations is considered in Sobolev spaces in three spatial dimensions. The Strichartz estimates of Koch and Tzvetkov type are used for obtaining the solutions in the Sobolev spaces of low regularities. One of the main results is that the solutions exist time globally for large data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bona J.L. and Smith R. (1975). The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London Ser. A 278: 555–601

    Article  ADS  MathSciNet  Google Scholar 

  2. Brenner P. (1984). On space-time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations. Math. Z. 186: 383–391

    Article  MATH  MathSciNet  Google Scholar 

  3. Ginibre J. and Velo G. (1985). Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 43: 399–442

    MATH  MathSciNet  Google Scholar 

  4. Ginibre J. and Velo G. (1995). Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133: 50–68

    Article  MATH  MathSciNet  Google Scholar 

  5. Ginibre J. and Velo G. (2003). Long range scattering and modified wave operators for the Maxwell-Schrödinger system. I. The case of vanishing asymptotic magnetic field. Commun. Math. Phys. 236: 395–448

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Ginibre J. and Velo G. (2006). Long range scattering for the Maxwell-Schrödinger system with large magnetic field data and small Schrödinger data. Publ. Res. Inst. Math. Sci. 42: 421–459

    MathSciNet  MATH  Google Scholar 

  7. Guo Y., Nakamitsu K. and Strauss W. (1995). Global finite-energy solutions of the Maxwell-Schrödinger system. Commun. Math. Phys. 170: 181–196

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Kato J. (2005). Existence and uniqueness of the solution to the modified Schrödinger map. Math. Res. Lett. 12: 171–186

    MATH  MathSciNet  Google Scholar 

  9. Kato T. (1970). Linear evolution equations of “hyperbolic” type. J. Fac. Sci. Univ. Tokyo Sect. I, 17: 241–258

    MATH  MathSciNet  Google Scholar 

  10. Kato T. (1973). Linear evolution equations of “hyperbolic” type. II. J. Math. Soc. Japan 25: 648–666

    Article  MATH  MathSciNet  Google Scholar 

  11. Kato T. (1987). On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 46: 113–129

    MATH  Google Scholar 

  12. Kato T. and Ponce G. (1988). Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41: 891–907

    Article  MATH  MathSciNet  Google Scholar 

  13. Keel M. and Tao T. (1998). Endpoint Strichartz estimates. Amer. J. Math. 120: 955–980

    Article  MATH  MathSciNet  Google Scholar 

  14. Kenig C.E. and Koenig K.D. (2003). On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations. Math. Res. Lett. 10: 879–895

    MATH  MathSciNet  Google Scholar 

  15. Koch H. and Tzvetkov N. (2003). On the local well-posedness of the Benjamin-Ono equation in \(H^s({\mathbb{R}})\). Int. Math. Res. Not. 26: 1449–1464

    Article  MathSciNet  Google Scholar 

  16. Nakamitsu K. and Tsutsumi M. (1986). The Cauchy problem for the coupled Maxwell-Schrödinger equations. J. Math. Phys. 27: 211–216

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Nakamura M. and Wada T. (2005). Local well-posedness for the Maxwell-Schrödinger equation. Math. Ann. 332: 565–604

    Article  MATH  MathSciNet  Google Scholar 

  18. Shimomura A. (2003). Modified wave operators for Maxwell-Schrödinger equations in three space dimensions. Ann. Henri Poincaré 4: 661–683

    Article  MATH  MathSciNet  Google Scholar 

  19. Strichartz R. (1977). Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44: 705–714

    Article  MATH  MathSciNet  Google Scholar 

  20. Triebel H. (1992). Theory of function spaces. II. Monographs in Mathematics 84. Birkhäuser Verlag, Basel

    Google Scholar 

  21. Tsutsumi Y. (1993). Global existence and asymptotic behavior of solutions for the Maxwell-Schrödinger equations in three space dimensions. Commun. Math. Phys., 151: 543–576

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Yajima K. (1987). Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110: 415–426

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Nakamura.

Additional information

Communicated by P. Constantin

Dedicated to Professor Hiroki Tanabe on his seventy-fifth birthday

Supported by Grant-in-Aid for Young Scientists (B) #16740071 of Japan Ministry of Education, Culture, Sports, Science and Technology.

Supported by Grant-in-Aid for Young Scientists (B) #16740075 of Japan Ministry of Education, Culture, Sports, Science and Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, M., Wada, T. Global Existence and Uniqueness of Solutions to the Maxwell-Schrödinger Equations. Commun. Math. Phys. 276, 315–339 (2007). https://doi.org/10.1007/s00220-007-0337-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0337-9

Keywords

Navigation