Skip to main content
Log in

Local Regularity Criteria in Terms of One Velocity Component for the Navier–Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

This paper is devoted to presenting new interior regularity criteria in terms of one velocity component for weak solutions to the Navier–Stokes equations in three dimensions. It is shown that the velocity is regular near a point z if its scaled \(L^p_tL^q_x\)-norm of some quantities related to the velocity field is finite and the scaled \(L^p_tL^q_x\)-norm of one velocity component is sufficiently small near z.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. That means \(\Vert v_\lambda \Vert _{L^p \big (0,\lambda ^{-2}T;{\dot{H}}^{\frac{1}{2} + \frac{2}{p}}({\mathbb {R}}^3) \big )} = \Vert v\Vert _{L^p \big (0,T;{\dot{H}}^{\frac{1}{2} + \frac{2}{p}}({\mathbb {R}}^3) \big )}\) for \(v_\lambda (x,t) = \lambda v(\lambda x,\lambda ^2 t)\) with \(\lambda > 0\).

References

  1. Bae, H., Kang, K.: Regularity condition of the incompressible Navier–Stokes equations in terms of one velocity component. Appl. Math. Lett. 94, 120–125 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)

  3. Bradshaw, Z., Tsai, T.-P.: Global existence, regularity, and uniqueness of infinite energy solutions to the Navier–Stokes equations. Commun. Part. Differ. Equ. 45(9), 1168–1201 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Cao, C., Titi, E.S.: Regularity criteria for the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 57(6), 2643–2661 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chae, D., Wolf, J.: On the Serrin-type condition on one velocity component for the Navier–Stokes equations. Arch. Ration. Mech. Anal. 240(3), 1323–1347 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chemin, J.-Y., Zhang, P.: On the critical one component regularity for 3-D Navier–Stokes systems. Ann. Sci. Éc. Norm. Supér. (4) 49(1), 131–167 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chemin, J.-Y., Zhang, P., Zhang, Z.: On the critical one component regularity for 3-D Navier–Stokes system: general case. Arch. Ration. Mech. Anal. 224(3), 871–905 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Escauriaza, L., Seregin, G.A., Šverák, V.: \(L_{3,\infty }\)-solutions of Navier–Stokes equations and backward uniqueness. Uspekhi Mat. Nauk 58(2), 3–44 (2003)

    MathSciNet  Google Scholar 

  10. Fabes, E.B., Jones, B.F., Rivière, N.M.: The initial value problem for the Navier–Stokes equations with data in \(L^{p}\). Arch. Ration. Mech. Anal. 45, 222–240 (1972)

    Article  MATH  Google Scholar 

  11. Gustafson, S., Kang, K., Tsai, T.-P.: Regularity criteria for suitable weak solutions of the Navier–Stokes equations near the boundary. J. Differ. Equ. 226(2), 594–618 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Gustafson, S., Kang, K., Tsai, T.-P.: Interior regularity criteria for suitable weak solutions of the Navier–Stokes equations. Commun. Math. Phys. 273(1), 161–176 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Han, B., Lei, Z., Li, D., Zhao, N.: Sharp one component regularity for Navier–Stokes. Arch. Ration. Mech. Anal. 231(2), 939–970 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jia, H., Šverák, V.: Minimal \(L^3\)-initial data for potential Navier–Stokes singularities. SIAM J. Math. Anal. 45(3), 1448–1459 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jia, H., Šverák, V.: Local-in-space estimates near initial time for weak solutions of the Navier–Stokes equations and forward self-similar solutions. Invent. Math. 196(1), 233–265 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kang, K., Miura, H., Tsai, T.-P.: Short time regularity of Navier–Stokes flows with locally \(L^3\) initial data and applications. Int. Math. Res. Not. 1, rnz327 (2020)

    Google Scholar 

  18. Kang, K., Miura, H., Tsai, T.-P.: Regular sets and an \(\epsilon \)-regularity theorem in terms of initial data for the Navier–Stokes equations. Pure Appl. Anal. 3(3), 567–594 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kikuchi, N., Seregin, G.: Weak solutions to the Cauchy problem for the Navier–Stokes equations satisfying the local energy inequality. In: Nonlinear Equations and Spectral Theory, volume 220 of Amer. Math. Soc. Transl. Ser. 2, pp. 141–164. Amer. Math. Soc., Providence, RI (2007)

  20. Kukavica, I., Rusin, W., Ziane, M.: An anisotropic partial regularity criterion for the Navier–Stokes equations. J. Math. Fluid Mech. 19(1), 123–133 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kukavica, I., Rusin, W., Ziane, M.: On local regularity conditions for the Navier–Stokes equations. Nonlinearity 32(6), 1905–1928 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kukavica, I., Ziane, M.: One component regularity for the Navier–Stokes equations. Nonlinearity 19(2), 453–469 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Ladyženskaya, O.A.: Uniqueness and smoothness of generalized solutions of Navier–Stokes equations. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 5, 169–185 (1967)

    MathSciNet  Google Scholar 

  24. Ladyžhenskaya, O.A., Seregin, G.A.: On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations. J. Math. Fluid Mech. 1(4), 356–387 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Lemarié-Rieusset, P.G.: Recent developments in the Navier–Stokes problem. Chapman & Hall/CRC Research Notes in Mathematics, vol. 431. Chapman & Hall/CRC, Boca Raton, FL (2002)

  26. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin, F.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Commun. Pure Appl. Math. 51(3), 241–257 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Neustupa, J., Novotný, A., Penel, P.: An interior regularity of a weak solution to the Navier–Stokes equations in dependence on one component of velocity. In: Topics in mathematical fluid mechanics, volume 10 of Quad. Mat., pp. 163–183. Dept. Math. Seconda Univ. Napoli, Caserta (2002)

  29. Neustupa, J.: A contribution to the theory of regularity of a weak solution to the Navier–Stokes equations via one component of velocity and other related quantities. J. Math. Fluid Mech. 20(3), 1249–1267 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Neustupa, J., Penel, P.: Regularity of a suitable weak solution to the Navier–Stokes equations as a consequence of regularity of one velocity component. In: Applied Nonlinear Analysis, pp. 391–402. Kluwer/Plenum, New York (1999)

  31. Prodi, G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 4(48), 173–182 (1959)

    Article  MATH  Google Scholar 

  32. Scheffer, V.: Partial regularity of solutions to the Navier–Stokes equations. Pac. J. Math. 66(2), 535–552 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  33. Scheffer, V.: Hausdorff measure and the Navier–Stokes equations. Commun. Math. Phys. 55(2), 97–112 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  35. Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962), pp. 69–98. Univ. of Wisconsin Press, Madison, Wis. (1963)

  36. Vasseur, A.F.: A new proof of partial regularity of solutions to Navier–Stokes equations. NoDEA Nonlinear Differ. Equ. Appl. 14(5–6), 753–785 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, W., Wu, D., Zhang, Z.: Scaling invariant Serrin criterion via one velocity component for the Navier–Stokes equations. arXiv:2005.11906 (2020)

  38. Wang, W., Zhang, Z.: On the interior regularity criteria and the number of singular points to the Navier–Stokes equations. J. Anal. Math. 123, 139–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wolf, J.: On the local regularity of suitable weak solutions to the generalized Navier–Stokes equations. Ann. Univ. Ferrara Sez. VII Sci. Math. 61(1), 149–171 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhou, Y., Pokorný, M.: On the regularity of the solutions of the Navier–Stokes equations via one velocity component. Nonlinearity 23(5), 1097–1107 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

K. Kang was supported by NRF-2019R1A2C1084685. D. D. Nguyen was supported by NRF-2015R1A5A1009350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Duong Nguyen.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Additional information

Communicated by G. P. Galdi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, K., Nguyen, D.D. Local Regularity Criteria in Terms of One Velocity Component for the Navier–Stokes Equations. J. Math. Fluid Mech. 25, 10 (2023). https://doi.org/10.1007/s00021-022-00754-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-022-00754-8

Keywords

Mathematics Subject Classification

Navigation