Skip to main content
Log in

Lagrangian Supersymmetries Depending on Derivatives. Global Analysis and Cohomology

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Lagrangian contact supersymmetries (depending on derivatives of arbitrary order) are treated in a very general setting. The cohomology of the variational bicomplex on an arbitrary graded manifold and the iterated cohomology of a generic nilpotent contact supersymmetry are computed. In particular, the first variational formula and conservation laws for Lagrangian systems on graded manifolds using contact supersymmetries are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, I., Duchamp, T.: On the existence of global variational principles. Am. J. Math. 102, 781–868 (1980)

    Google Scholar 

  2. Anderson, I.: Introduction to the variational bicomplex. Contemp. Math. 132, 51–73 (1992)

    Google Scholar 

  3. Anderson, I., Kamran, N., Olver, P: Internal, external and generalized symmetries. Adv. Math. 100, 53–100 (1993)

    Article  Google Scholar 

  4. Barnich, G., Brandt, F., Henneaux, M.: Local BRST cohomology in the antifield formalism. 1. General theorems. Commun. Math. Phys. 174, 57–91 (1995)

    Google Scholar 

  5. Barnich, G., Brandt, F., Henneaux, M.: Local BRST cohomology in gauge theories. Phys. Rep. 338, 439–569 (2000)

    Article  Google Scholar 

  6. Bartocci, C., Bruzzo, U., Hernández Ruipérez, D.: The Geometry of Supermanifolds. Dordrecht: Kluwer, 1991

  7. Batalin, I., Vilkoviski, G.: Closure of the gauge algebra, generalized Lie algebra equations and Feynman rules. Nucl. Phys. B234, 106–124 (1984)

    Google Scholar 

  8. Brandt, F.: Local BRST cohomology and covariance. Commun. Math. Phys. 190, 459–489 (1997)

    Article  Google Scholar 

  9. Brandt, F.: Jet coordinates for local BRST cohomology. Lett. Math. Phys. 55, 149–159 (2001)

    Article  Google Scholar 

  10. Bredon, G.: Topology and Geometry. Berlin: Springer-Verlag, 1993

  11. Bryant, R., Griffiths, P., Grossman, D.: Exterior Differential Systems and Euler–Lagrange Partial Differential Equations. Chicago, IL: Univ. of Chicago Press, 2003

  12. Cariñena, J., Figueroa, H.: Hamiltonian versus Lagrangian formulations of supermechanics. J. Phys. A 30, 2705–2724 (1997)

    Google Scholar 

  13. Cianci, R., Francaviglia, M. Volovich, I.: Variational calculus and Poincaré–Cartan formalism in supermanifolds. J. Phys. A. 28, 723–734 (1995)

    Google Scholar 

  14. Dragon, N.: BRS symmetry and cohomology. http://arxiv.org/list/hep-th/9602163, 1996

  15. Dubois-Violette, M., Henneaux, M., Talon, M., Vialett, C.-M.: General solution of the consistence equation. Phys. Lett. B 289, 361–367 (1992)

    Article  Google Scholar 

  16. Fatibene, L., Ferraris, M., Francaviglia, M., McLenaghan, R.: Generalized symmetries in mechanics and field theories. J. Math. Phys. 43, 3147–3161 (2002)

    Article  Google Scholar 

  17. Franco, D., Polito, C.: Supersymmetric field-theoretic models on a supermanifold. J. Math. Phys. 45, 1447–1473 (2004)

    Article  Google Scholar 

  18. Fulp, R., Lada, T., Stasheff, J.: Sh-Lie algebras induced by gauge transformations. Comm. Math. Phys. 231, 25–43 (2002)

    Article  Google Scholar 

  19. Fulp, R., Lada, T., Stasheff, J.: Noether variational Theorem II and the BV formalism. Rend. Circ. Mat. Palermo (2) Suppl. (71), 115–126 (2003)

    Google Scholar 

  20. Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Cohomology of the variational complex. http://arxiv.org/list/math-ph/0005010, 2000

  21. Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Iterated BRST cohomology. Lett. Math. Phys. 53, 143–156 (2000)

    Article  Google Scholar 

  22. Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Cohomology of the infinite-order jet space and the inverse problem. J. Math. Phys. 42, 4272–4282 (2001)

    Article  Google Scholar 

  23. Godement, R.: Théorie des Faisceaux. Paris: Hermann, 1964.

  24. Gomis, J., París, J., Samuel, S.: Antibracket, antifields and gauge theory quantization. Phys. Rep 295, 1–145 (1995)

    Article  Google Scholar 

  25. Gotay, M.: A multisymplectic framework for classical field theory and the calculus of variations. In: Mechanics, Analysis and Geometry: 200 Years after Lagrange. Amsterdam: North Holland, 1991, pp. 203–235

  26. Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature, and Cohomology, Vol. 1. New York: Academic Press, 1972

  27. Hernández Ruipérez, D., Muñoz Masqué, J.: Global variational calculus on graded manifolds. J. Math. Pures Appl. 63, 283–309 (1984)

    Google Scholar 

  28. Hirzebruch, F.: Topological Methods in Algebraic Geometry. Berlin: Springer-Verlag, 1966

  29. Ibragimov, N.:Transformation Groups Applied to Mathematical Physics. Boston: Riedel, 1985

  30. Krasil’shchik, I., Lychagin, V., Vinogradov, A.: Geometry of Jet Spaces and Nonlinear Partial Differential Equations. New York: Gordon and Breach, 1985

  31. Mac Lane, S.: Homology. Berlin: Springer-Verlag, 1967

  32. Mangiarotti, L., Sardanashvily, G.: Connections in Classical and Quantum Field Theory. Singapore: World Scientific, 2000

  33. Massey, W.: Homology and Cohomology Theory. New York: Marcel Dekker, 1978

  34. Monterde, J., Vallejo, J.: The symplectic structure of Euler–Lagrange superequations and Batalin–Vilkoviski formalism. J. Phys. A 36, 4993–5009 (2003)

    Google Scholar 

  35. Olver, P.: Applications of Lie Groups to Differential Equations. Berlin: Springer-Verlag, 1986

  36. Rennie, A.: Smoothness and locality for nonunital spectral triples. K-Theory 28, 127–165 (2003)

    Article  Google Scholar 

  37. Sardanashvily, G.: Covariant spin structure. J. Math. Phys. 39, 2714–2729 (1998)

    Article  Google Scholar 

  38. Sardanashvily, G.: SUSY-extended field theory. Int. J. Mod. Phys. A 15, 3095–3112 (2000)

    Article  Google Scholar 

  39. Sardanashvily, G.: Cohomology of the variational complex in field-antifield BRST theory. Mod. Phys. Lett. A 16, 1531–1541 (2001)

    Article  Google Scholar 

  40. Sardanashvily, G.: Remark on the Serre–Swan theorem for non-compact manifolds. http://arxiv.org/list/math-ph/0102016, 2001

  41. Sardanashvily, G.: Cohomology of the variational complex in the class of exterior forms of finite jet order. Int. J. Math. and Math. Sci. 30, 39–48 (2002)

    Article  Google Scholar 

  42. Takens, F.: A global version of the inverse problem of the calculus of variations. J. Diff. Geom. 14, 543–562 (1979)

    Google Scholar 

  43. Tulczyiew, W.: The Euler–Lagrange resolution. In: Differential Geometric Methods in Mathematical Physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), Lecture Notes in Math. 836. Berlin: Springer, 1980, pp. 22–48

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N.A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giachetta, G., Mangiarotti, L. & Sardanashvily, G. Lagrangian Supersymmetries Depending on Derivatives. Global Analysis and Cohomology. Commun. Math. Phys. 259, 103–128 (2005). https://doi.org/10.1007/s00220-005-1297-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1297-6

Keywords

Navigation