Skip to main content
Log in

Bismuth film based electrochemical hydroxymethylfurfural sensor

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

A simple and sensitive electrochemical sensor based on bismuth film that was coated onto a carbon paste electrode was prepared and used for hydroxymethylfurfural (HMF) detection. It was observed that bismuth film electrode (BiFE) greatly accelerated the electron transfer rate and showed excellent electrochemical activity for the oxidation of HMF compared to bare electrode. The effects of bismuth concentration, deposition potential, and deposition time on the responses of BiFE for the detection of HMF were optimized. As an analytical characteristic parameter, oxidation peak current was linearly related to HMF concentration in the range of 0.01 μM to 40 μM with a limit of detection value of 0.363 μM. Also, when selectivity studies were conducted, it was observed that BiFE had no interfering effect in the presence of three fold concentrations of coexisting similar structures compared to that of HMF. Moreover, the proposed method was successfully applied for the sensitive determination of HMF in various food samples with satisfactory recoveries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Ait Rass H, Essayem N, Besson M (2013) Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts: Influence of the base and effect of bismuth promotion. Green Chem 15(8):2240–2251. https://doi.org/10.1039/c3gc40727f

    Article  CAS  Google Scholar 

  2. de Andrade JK, de Andrade CK, Komatsu E et al (2017) A validated fast difference spectrophotometric method for 5-hydroxymethyl-2-furfural (HMF) determination in corn syrups. Food Chem 228:197–203. https://doi.org/10.1016/j.foodchem.2017.01.158

    Article  CAS  PubMed  Google Scholar 

  3. Anik Ü, Timur S, Çubukçu M, Merkoçi A (2008) The usage of a bismuth film electrode as transducer in glucose biosensing. Microchim Acta 160:269–273. https://doi.org/10.1007/s00604-007-0868-y

    Article  CAS  Google Scholar 

  4. Anik Ü, Çubukçu M, Çevik S, Timur S (2010) Usage of bismuth film electrode as biosensor transducer for alkaline phosphatase assay. Electroanalysis 22:1519–1523. https://doi.org/10.1002/elan.200900447

    Article  CAS  Google Scholar 

  5. Avci O, Perk B, Ören Varol T et al (2019) A polyoxy group branched diazo dye as an alternative material for the fabrication of an electrochemical epinephrine sensor. New J Chem 43:18575–18581. https://doi.org/10.1039/c9nj04802b

    Article  CAS  Google Scholar 

  6. Barzegar F, Kamankesh M (2021) Mohammadi A (2021) Recent development in formation, toxic effects, human health and analytical techniques of food contaminants. Food Rev Int. https://doi.org/10.1080/875591291929303

    Article  Google Scholar 

  7. Baş SD, Gürkan R (2021) Selective extraction and enrichment of 5-hydroymethylfurfural from honey, molasses, jam and vinegar samples prior to sensitive determination by micro-volume UV-vis spectrophotometry. Journal of Food Composition and Analysis 95: https://doi.org/10.1016/j.jfca.2020.103664

    Article  CAS  Google Scholar 

  8. Bignardi C, Cavazza A, Corradini C (2014) Selected product ion monitoring for quantification of 5-hydroxymethylfurfural in food products by capillary zone electrophoresis-tandem ion trap mass spectrometry. Food Control 46:41–48. https://doi.org/10.1016/j.foodcont.2014.04.049

    Article  CAS  Google Scholar 

  9. Capuano E, Fogliano V (2011) Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT Food Sci Technol 44:793–810. https://doi.org/10.1016/j.lwt.2010.11.002

    Article  CAS  Google Scholar 

  10. Chaharlangi M, Tashkourian J, Bordbar MM et al (2021) A paper-based colorimetric sensor array for discrimination of monofloral European honeys based on gold nanoparticles and chemometrics data analysis. Spectrochim Acts Part A Mol Biomol Spectrosc 247:119076

    Article  CAS  Google Scholar 

  11. Chanique GD, Arévalo AH, Zonn MA, Fernandezn H (2013) Electrochemical reduction of patulin and 5-hydroxymethylfurfural in both neutral and acid non-aqueous media. Their electroanalytical determination in apple juices. Talanta 111:85–92. https://doi.org/10.1016/j.talanta.2013.02.041

    Article  CAS  Google Scholar 

  12. Doğan T, Anik Ü, Dursun Z (2019) Development of practical electrochemical system for phenytoin detection. ChemistrySelect 4:7704–7708. https://doi.org/10.1002/slct.201901722

    Article  CAS  Google Scholar 

  13. Du D, Ye X, Zhang J, liu D, (2008) Cathodic electrochemical analysis of methyl parathion at bismuth-film-modified glassy carbon electrode. Electrochim Acta 53:4478–4484. https://doi.org/10.1016/j.electacta.2008.01.023

    Article  CAS  Google Scholar 

  14. Durling LJK, Busk L, Hellman BE (2009) Evaluation of the DNA damaging effect of the heat-induced food toxicant 5-hydroxymethylfurfural (HMF) in various cell lines with different activities of sulfotransferases. Food Chem Toxicol 47:880–884. https://doi.org/10.1016/j.fct.2009.01.022

    Article  CAS  PubMed  Google Scholar 

  15. Fang G, Lv Y, Sheng W et al (2011) Development of an enzyme-linked immunosorbent assay for the determination of 5-hydroxymethyl-2-furfural in food. Anal Bioanal Chem 401:3367–3373. https://doi.org/10.1007/s00216-011-5430-4

    Article  CAS  PubMed  Google Scholar 

  16. Figueiredo-Filho LCS, Azzi DC, Janegitz BC, Fatibello-Filho O (2012) Determination of atrazine in natural water samples by differential pulse adsorptive stripping voltammetry using a bismuth film electrode. Electroanalysis 24:303–308. https://doi.org/10.1002/elan.201100421

    Article  CAS  Google Scholar 

  17. Gürkan R, Altunay N (2015) Quantification of 5-hydroxymethylfurfural in honey samples and acidic beverages using spectrophotometry coupled with ultrasonic-assisted cloud point extraction. J Food Composit Anal 42:141–151. https://doi.org/10.1016/j.jfca.2015.03.012

    Article  CAS  Google Scholar 

  18. Jiang N, Li P, Sun S, Wei W (2022) A ratiometric fluorescence sensor for 5-hydroxymethylfurfural detection based on strand displacement reaction. Talanta. https://doi.org/10.1016/j.talanta.2021.123029

    Article  PubMed  Google Scholar 

  19. Kirgöz-Anik Ü, Marín S, Pumera M et al (2005) Stripping voltammetry with bismuth modified graphite-epoxy composite electrodes. Electroanalysis 17:881–886. https://doi.org/10.1002/elan.200403167

    Article  CAS  Google Scholar 

  20. Kreft GL, De Braga OC, Spinelli A (2012) Analytical electrochemistry of vitamin B 12 on a bismuth-film electrode surface. Electrochim Acta 83:125–132. https://doi.org/10.1016/j.electacta.2012.07.132

    Article  CAS  Google Scholar 

  21. Li Y, Huang L, Weng X et al (2021) Black phosphorene modified electrochemical sensor for fast determination of 5-Hydroxymethyl-2-furfural in Milk. Electroanalysis 33:2452–2459. https://doi.org/10.1002/elan.202100302

    Article  CAS  Google Scholar 

  22. Li Y, Zhang J, Lv M et al (2022) Voltammetric determination of 5-hydroxymethyl-2-furfural in processed cheese using an easy-made and economic integrated 3D graphene-like electrode. Sensors. https://doi.org/10.3390/s22010064

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li H, Zhao J, Zhao S, Cui G (2021) Simultaneous determination of trace Pb(II), Cd(II), and Zn(II) using an integrated three-electrode modified with bismuth film. Microchem J. https://doi.org/10.1016/j.microc.2021.106390

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lomillo MAA, Del Campo FJ, Pascual FJM (2006) Preliminary contribution to the quantification of HMF in honey by electrochemical biosensor chips. Electroanalysis 18:2435–2440. https://doi.org/10.1002/elan.200603698

    Article  CAS  Google Scholar 

  25. Martins FCOL, Alcantara GMRN, Flavia A, Silva S (2022) The role of 5-hydroxymethylfurfural in food and recent advances in analytical methods. Food Chem. https://doi.org/10.1016/j.foodchem.2022.133539

    Article  PubMed  Google Scholar 

  26. Merkoçi A, Anik U, Çevik S et al (2010) Bismuth film combined with screen-printed electrode as biosensing platform for phenol detection. Electroanalysis 22:1429–1436. https://doi.org/10.1002/elan.200970002

    Article  CAS  Google Scholar 

  27. Oral RA, Mortas M, Dogan M et al (2014) New approaches to determination of HMF. Food Chem 143:367–370. https://doi.org/10.1016/j.foodchem.2013.07.135

    Article  CAS  PubMed  Google Scholar 

  28. Reyes-Salas EO, Manzanilla-Cano JA, Barceló-Quintal MH et al (2006) Direct electrochemical determination of hydroxymethylfurfural (HMF) and its application to honey samples. Anal Lett 39:161–171. https://doi.org/10.1080/00032710500423476

    Article  CAS  Google Scholar 

  29. Salhi I, Samet Y, Trabelsi M (2020) Direct electrochemical determination of very low levels of 5-hydroxymethyl furfural in natural honey by cyclic and square wave voltammetric techniques. J Electroanal Chem 873:114326. https://doi.org/10.1016/j.jelechem.2020.114326

    Article  CAS  Google Scholar 

  30. Shamsipur M, Beigi AAM, Teymouri M et al (2010) Electrocatalytic application of girard’s reagent t to simultaneous determination of furaldehydes in pharmaceutical and food matrices by highly sensitive voltammetric methods. Electroanalysis 22:1314–1322. https://doi.org/10.1002/elan.200900600

    Article  CAS  Google Scholar 

  31. Shivappa Adarakatti P, Kumar Kempahanumakkagari S (2019) Modified electrodes for sensing. In. Electrochemistry 15:58–91

    Article  Google Scholar 

  32. Tepeli Büyüksünetci Y, Haklı Ö, Anik Ü (2020) Centri-voltammetric folic acid detection. Electroanalysis 32:470–478. https://doi.org/10.1002/elan.201900582

    Article  CAS  Google Scholar 

  33. Wang J, Lu J, Anik-Kırgöz Ü et al (2001) Insights into the anodic stripping voltammetric behaviour of bismuth film electrode. Anal Chim Acta 434:29–34

    Article  CAS  Google Scholar 

  34. Wang J, Lu J, Hocevar SB et al (2000) Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal Chem 72:3218–3222. https://doi.org/10.1021/ac000108x

    Article  CAS  PubMed  Google Scholar 

  35. Winkler O (1955) Beitrag zum Nachweis und zur Bestimmung von Oxymethylfurfurol in Honig und Kunsthonig. Zeitschrift fur Leb Untersuchung und Forshung 102:161–167. https://doi.org/10.1007/BF00435111

    Article  CAS  Google Scholar 

  36. Yaman YT, Bolat G, Yardimci C, Abaci S (2018) An ionic liquid/bismuth film-modified sensor for the electrochemical detection of cefixime. Turkish J Chem 42:826–838. https://doi.org/10.3906/kim-1710-17

    Article  CAS  Google Scholar 

  37. Yang Y, Mu T (2021) Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chem 23:4228–4254. https://doi.org/10.1039/d1gc00914a

    Article  CAS  Google Scholar 

  38. Ye Y, Zhang H, Kahaljian G et al (2022) Electro-oxidation and determination 5-hydroxymethylfurfural in food on co-electrodeposited Cu-Ni bimetallic microparticles modified copper electrode. Food Chem 367:130659

    Article  CAS  PubMed  Google Scholar 

  39. Zhang H, Ping Q, Zhang J, Li N (2017) Determination of Furfural and Hydroxymethyl furfural by UV Spectroscopy in ethanol-water hydrolysate of Reed. J Bioresour Bioprod 2:170–174. https://doi.org/10.21967/jbb.v2i4.84

    Article  Google Scholar 

Download references

Funding

There is no funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

VHO: investigation, data curation, formal analysis, and writing—original draft, review and editing. OA: formal analysis, YTB: investigation, data curation, formal analysis, and writing—original draft, review and editing. UA: conceptualization, supervision, and writing—review and editing.

Corresponding authors

Correspondence to Vasfiye Hazal Özyurt or Ülkü Anık.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özyurt, V.H., Avcı, O., Tepeli-Büyüksünetci, Y. et al. Bismuth film based electrochemical hydroxymethylfurfural sensor. Eur Food Res Technol 249, 1563–1574 (2023). https://doi.org/10.1007/s00217-023-04236-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04236-7

Keywords

Navigation