Skip to main content
Log in

Phenolic compounds classification and their distribution in winemaking by-products

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The wine industry produces thousands of tons of residues, which represent a waste management issue, both ecologically and economically. The large amounts of grape by-products in winemaking process have been described as an important natural source of polyphenols with health promising properties. Phenolic compounds are found in winemaking by-products, including in seeds, skins, stems and pomace of grapes. Among the several classes of naturally occurring phenolic compounds flavonoids are one of the most important, being acknowledge with some biological properties, such as antioxidant, cardioprotective, antiproliferative, anticancer, anti-inflammatory, antiaging and antimicrobial, which has led to an interest both by industry and the scientific community. Circular economy concerns turned the focus to the presence of bioactive phenolic compounds in by-products, namely to those generated in the winemaking process. This review summarizes current knowledge and recent insights in the phenolic compounds found in the principal grape by-products: stems and pomace (seeds and skins).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Zálešák F, Bon DJ-YD, Pospíšil J (2019) Lignans and neolignans: plant secondary metabolites as a reservoir of biologically active substances. Pharmacol Res 146:104284. https://doi.org/10.1016/j.phrs.2019.104284

    Article  CAS  PubMed  Google Scholar 

  2. Mathur S, Hoskins C (2017) Drug development: lessons from nature. Biomed Rep 6:612–614. https://doi.org/10.3892/br.2017.909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Esparza I, Cimminelli MJ, Moler JA, Jiménez-Moreno N, Ancín-Azpilicueta C (2020) Stability of phenolic compounds in grape stem extracts. Antioxidants 9:720. https://doi.org/10.3390/antiox9080720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Esparza I, Moler JA, Arteta M, Jiménez-Moreno N, Ancín-Azpilicueta C (2021) Phenolic composition of grape stems from different spanish varieties and vintages. Biomolecules 11:1221. https://doi.org/10.3390/biom11081221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50:586–621. https://doi.org/10.1002/anie.201000044

    Article  CAS  Google Scholar 

  6. Bordiga M, Travaglia F, Locatelli M (2019) Valorisation of grape pomace: an approach that is increasingly reaching its maturity—a review. Int J Food Sci Technol 54:933–942. https://doi.org/10.1111/ijfs.14118

    Article  CAS  Google Scholar 

  7. Ncube NS, Afolayan AJ, Okoh AI (2008) Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. Afr J Biotechnol 7:1797–1806. https://doi.org/10.5897/AJB07.613

    Article  CAS  Google Scholar 

  8. Beres C, Costa GNS, Cabezudo I, da Silva-James NK, Teles ASC, Cruz APG, Mellinger-Silva C, Tonon RV, Cabral LMC, Freitas SP (2017) Towards integral utilization of grape pomace from winemaking process: a review. Waste Manag 68:581–594. https://doi.org/10.1016/j.wasman.2017.07.017

    Article  PubMed  Google Scholar 

  9. Tahmaz Karaman H, Yüksel Küskü D, Söylemezoğlu G (2021) Phenolic compounds and antioxidant capacities in grape berry skin, seed and stems of six winegrape varieties grown in Turkey. Acta Sci Pol Hortorum Cultus 20:15–25. https://doi.org/10.24326/asphc.2021.1.2

    Article  Google Scholar 

  10. Troilo M, Difonzo G, Paradiso VM, Summo C, Caponio F (2021) Bioactive compounds from vine shoots, grape stalks, and wine lees: their potential use in agro-food chains. Foods 10:342. https://doi.org/10.3390/foods10020342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vuolo MM, Lima VS, Maróstica Jr MR (2019) Phenolic compounds: structure, classification, and antioxidant power. In: Bioactive compounds. Elsevier, pp. 33–50 ISBN 978-0-12-814774-0. https://doi.org/10.1016/B978-0-12-814774-0.00002-5

  12. Chikezie PC, Ibegbulem CO (2015) Medicinal potentials and toxicity concerns of bioactive principles. Med Aromat Plants. https://doi.org/10.4172/2167-0412.1000202

    Article  Google Scholar 

  13. Pagare S, Bhatia M, Tripathi N, Pagare S, Bansal YK (2015) Secondary metabolites of plants and their role: overview. Current Trends in Biotechnology and Pharmacy 9(3):293–304

    Google Scholar 

  14. de la Rosa LA, Moreno-Escamilla JO, Rodrigo-García J, Alvarez-Parrilla E (2019) Phenolic compounds. In: Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, pp 253–271. ISBN 978-0-12-813278-4

  15. Shahidi F, Varatharajan V, Oh WY, Peng H (2019) Phenolic compounds in agri-food by-products, their bioavailability and health effects. J Food Bioact. https://doi.org/10.31665/JFB.2019.5178

    Article  Google Scholar 

  16. Shitan N (2016) Secondary metabolites in plants: transport and self-tolerance mechanisms. Biosci Biotechnol Biochem 80:1283–1293. https://doi.org/10.1080/09168451.2016.1151344

    Article  CAS  PubMed  Google Scholar 

  17. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). Biochem Mol Biol Plants 24:1250–1319

    Google Scholar 

  18. Cheng A-X, Lou Y-G, Mao Y-B, Lu S, Wang L-J, Chen X-Y (2007) Plant terpenoids: biosynthesis and ecological functions. J Integr Plant Biol 49:179–186. https://doi.org/10.1111/j.1744-7909.2007.00395.x

    Article  CAS  Google Scholar 

  19. Debnath B, Singh WS, Das M, Goswami S, Singh MK, Maiti D, Manna K (2018) Role of plant alkaloids on human health: a review of biological activities. Mater Today Chem 9:56–72. https://doi.org/10.1016/j.mtchem.2018.05.001

    Article  CAS  Google Scholar 

  20. Tsimogiannis D, Oreopoulou V (2019) Classification of phenolic compounds in plants. In: Polyphenols in plants. Elsevier, pp 263–284. ISBN 978-0-12-813768-0

  21. Shahidi F, Naczk M (2003) Phenolics in food and nutraceuticals. CRC Press, Boca Raton. ISBN 978-1-58716-138-4

  22. Vuolo MM, Lima VS, Maróstica Jr MR (2019) Phenolic compounds. In: Bioactive compounds. Elsevier, pp 33–50. ISBN 978-0-12-814774-0

  23. Vermerris W, Nicholson R (2006) Families of phenolic compounds and means of classification. In: Phenolic compound biochemistry. Springer Netherlands, Dordrecht, pp 1–34. ISBN 978-1-4020-5163-0

  24. Ambriz-Pérez DL, Leyva-López N, Gutierrez-Grijalva EP, Basilio Heredia J, Yildiz F (Reviewing Editor) (2016) Phenolic compounds: natural alternative in inflammation treatment. A review cogent Food Agric 2:1 https://doi.org/10.1080/23311932.2015.1131412

  25. Miklasińska-Majdanik M, Kępa M, Wojtyczka R, Idzik D, Wąsik T (2018) Phenolic compounds diminish antibiotic resistance of staphylococcus aureus clinical strains. Int J Environ Res Public Health 15:2321. https://doi.org/10.3390/ijerph15102321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singla RK, Dubey AK, Garg A, Sharma RK, Fiorino M, Ameen SM, Haddad MA, Al-Hiary M (2019) Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int 102:1397–1400. https://doi.org/10.5740/jaoacint.19-0133

    Article  CAS  PubMed  Google Scholar 

  27. Cheynier V (2005) Polyphenols in foods are more complex than often thought. Am J Clin Nutr 81:223S-229S. https://doi.org/10.1093/ajcn/81.1.223S

    Article  CAS  PubMed  Google Scholar 

  28. Han X, Shen T, Lou H (2007) Dietary polyphenols and their biological significance. Int J Mol Sci 8:950–988. https://doi.org/10.3390/i8090950

    Article  CAS  PubMed Central  Google Scholar 

  29. Singh B, Singh JP, Kaur A, Singh N (2018) Phenolic compounds as beneficial phytochemicals in pomegranate (Punica Granatum L.) peel: a review. Food Chem 261:75–86. https://doi.org/10.1016/j.foodchem.2018.04.039

    Article  CAS  PubMed  Google Scholar 

  30. Moss GP (IUPAC Recommendations 2000) (2000) Pure Appl Chem 31

  31. Touré A, Xueming X (2010) Flaxseed lignans: source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits. Compr Rev Food Sci Food Saf 9:261–269. https://doi.org/10.1111/j.1541-4337.2009.00105.x

    Article  PubMed  Google Scholar 

  32. Ozcan T, Akpinar-Bayizit A, Yilmaz-Ersan L, Delikanli B (2014) Phenolics in human health. Int J Chem Eng Appl 5:393–396. https://doi.org/10.7763/IJCEA.2014.V5.416

    Article  CAS  Google Scholar 

  33. Birt DF, Jeffery E (2013) Flavonoids. Adv Nutr 4:576–577. https://doi.org/10.3945/an.113.004465

    Article  PubMed  PubMed Central  Google Scholar 

  34. D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R (2007) Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 43(4):348–361 (PMID: 18209268)

    CAS  PubMed  Google Scholar 

  35. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–16. https://doi.org/10.1155/2013/162750

    Article  CAS  Google Scholar 

  36. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:47. https://doi.org/10.1017/jns.2016.41

    Article  CAS  Google Scholar 

  37. Butterfield DA, Castegna A, Pocernich CB, Drake J, Scapagnini G, Calabrese V (2002) Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J Nutr Biochem 13:444–461. https://doi.org/10.1016/S0955-2863(02)00205-X

    Article  CAS  PubMed  Google Scholar 

  38. Iwashina T (2000) The structure and distribution of the flavonoids in plants. J Plant Res 113:287–299. https://doi.org/10.1007/PL00013940

    Article  CAS  Google Scholar 

  39. Middleton E (1998) Effect of plant flavonoids on immune and inflammatory cell function. In: Manthey JA, Buslig BS (eds) Flavonoids in the living system, vol. 439. Advances in experimental medicine and biology, Springer US: Boston, pp 175–182. ISBN 978-1-4613-7434-3

  40. Morales-Gonzalez JA (2013) Oxidative stress and chronic degenerative diseases—a role for antioxidants. InTech (ed) ISBN 978-953-51-1123-8

  41. Zhang Q, Zhao X, Qiu H (2013) Flavones and flavonols: phytochemistry and biochemistry. In: Ramawat KG, Mérillon J-M (eds) Natural products. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1821–1847. ISBN 978-3-642-22143-9

  42. Hostetler GL, Ralston RA, Schwartz SJ (2017) Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr Int Rev J 8:423–435. https://doi.org/10.3945/an.116.012948

    Article  CAS  Google Scholar 

  43. Jiang N, Doseff A, Grotewold E (2016) Flavones: from biosynthesis to health benefits. Plants 5:27. https://doi.org/10.3390/plants5020027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Donnelly DMX, Sheridan MH (1988) Neoflavonoids. In: Harborne JB (ed) The flavonoids: advances in research since 1980. Springer US, Boston. pp 211–232 ISBN 978-1-4899-2913-6

  45. Karakaya S (2004) Bioavailability of phenolic compounds. Crit Rev Food Sci Nutr 44:453–464. https://doi.org/10.1080/10408690490886683

    Article  CAS  PubMed  Google Scholar 

  46. Shen X, Zhou Q, Xiong W, Pu W, Zhang W, Zhang G, Wang C (2017) Synthesis of 5-subsituted flavonols via the Algar-Flynn-Oyamada (AFO) reaction: the mechanistic implication. Tetrahedron 73:4822–4829. https://doi.org/10.1016/j.tet.2017.06.064

    Article  CAS  Google Scholar 

  47. Sharma V, Ramawat KG (2013) Isoflavonoids. In: Ramawat KG, Mérillon J-M (eds) Natural products. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1849–1865. ISBN 978-3-642-22143-9

  48. Sharma A, Sharma P, Singh Tuli H, Sharma AK (2018) Phytochemical and pharmacological properties of flavonols. In: John Wiley & Sons Ltd (ed) eLS. John Wiley & Sons, Ltd, Chichester, pp 1–12. ISBN 978-0-470-01590-2

  49. Peterson J, Dwyer J (1998) Flavonoids: dietary occurrence and biochemical activity. Nutr Res 18:1995–2018. https://doi.org/10.1016/S0271-5317(98)00169-9

    Article  CAS  Google Scholar 

  50. Herrmann K (1976) Flavonols and flavones in food plants: a review. Int J Food Sci Technol 11:433–448. https://doi.org/10.1111/j.1365-2621.1976.tb00743.x

    Article  CAS  Google Scholar 

  51. Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61:1361779. https://doi.org/10.1080/16546628.2017.1361779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Laleh GH, Frydoonfar H, Heidary R, Jameei R, Zare S (2006) The effect of light, temperature, pH and species on stability of anthocyanin pigments in four Berberis species. Pak J Nutr 5:90–92. https://doi.org/10.3923/pjn.2006.90.92

    Article  Google Scholar 

  53. Glover BJ, Martin C (2012) Anthocyanins. Curr Biol 22:R147–R150. https://doi.org/10.1016/j.cub.2012.01.021

    Article  CAS  PubMed  Google Scholar 

  54. Veitch NC, Grayer RJ (2011) Flavonoids and their glycosides, including anthocyanins. Nat Prod Rep 28:1626. https://doi.org/10.1039/c1np00044f

    Article  CAS  PubMed  Google Scholar 

  55. Lila MA (2004) Anthocyanins and human health: an in vitro investigative approach. J Biomed Biotechnol 2004:306–313. https://doi.org/10.1155/S111072430440401X

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hackman RM, Polagruto JA, Zhu QY, Sun B, Fujii H, Keen CL (2007) Flavanols: digestion, absorption and bioactivity. Phytochem Rev 7:195–208. https://doi.org/10.1007/s11101-007-9070-4

    Article  CAS  Google Scholar 

  57. De Pascual-Teresa S, Moreno DA, García-Viguera C (2010) Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 11:1679–1703. https://doi.org/10.3390/ijms11041679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guaita, Bosso (2019) Polyphenolic characterization of grape skins and seeds of four Italian red cultivars at harvest and after fermentative maceration. Foods 8:395

  59. Conde C, Silva P,Fontes N, Dias ACP, Tavares RM, Sousa MJ, Agasse A, Delrot S, Gerós H (2007) Biochemical changes throughout grape berry development and fruit and wine quality. Food 22

  60. Tekale S, Mashele S, Pooe O, Thore S, Kendrekar P, Pawar R (2020) Biological role of chalcones in medicinal chemistry. In: Claborn D, Bhattacharya S, Roy S (eds) Vector-borne diseases—recent developments in epidemiology and control. IntechOpen. ISBN 978-1-83880-021-5

  61. Gomes MN, Muratov EN, Pereira M, Peixoto JC, Rosseto LP, Cravo PV, Andrade CH, Neves BJ (2017) Chalcone derivatives: promising starting points for drug design. Molecules 22:1210. https://doi.org/10.3390/molecules22081210 (PMID: 28757583; PMCID: PMC6152227)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z (2017) Chalcone: a privileged structure in medicinal chemistry. Chem Rev 117:7762–7810. https://doi.org/10.1021/acs.chemrev.7b00020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sebti S, Solhy A, Smahi A, Kossir A, Oumimoun H (2002) Dramatic activity enhancement of natural phosphate catalyst by lithium nitrate. An efficient synthesis of chalcones. Catal Commun 3:335–339. https://doi.org/10.1016/S1566-7367(02)00137-1

    Article  CAS  Google Scholar 

  64. Aksöz BE, Ertan R (2011) Chemical and structural properties of chalcones I 20

  65. Xia E-Q, Deng G-F, Guo Y-J, Li H-B (2010) Biological activities of polyphenols from grapes. Int J Mol Sci 11:622–646. https://doi.org/10.3390/ijms11020622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Garrido J, Borges F (2013) Wine and grape polyphenols—a chemical perspective. Food Res Int 54:1844–1858. https://doi.org/10.1016/j.foodres.2013.08.002

    Article  Google Scholar 

  67. Pérez-Navarro J, Izquierdo-Cañas P, Mena-Morales A, Chacón-Vozmediano J, Martínez-Gascueña J, García-Romero E, Hermosín-Gutiérrez I, Gómez-Alonso S (2020) Comprehensive chemical and sensory assessment of wines made from white grapes of Vitis vinifera cultivars Albillo Dorado and Montonera del Casar: a comparative study with Airén. Foods 9:1282. https://doi.org/10.3390/foods9091282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moreno-Arribas MV, Polo MC (2009) Wine chemistry and biochemistry. Springer New York, New York. ISBN 978-0-387-74116-1

  69. Radonjic MS (2019) The importance of total polyphenols content in red wine 11

  70. Fang F, Li J-M, Zhang P, Tang K, Wang W, Pan Q-H, Huang W-D (2008) Effects of grape variety, harvest date, fermentation vessel and wine ageing on flavonoid concentration in red wines. Food Res Int 41:53–60. https://doi.org/10.1016/j.foodres.2007.09.004

    Article  CAS  Google Scholar 

  71. Cotea VV, Luchian C, Niculaua M, Zamfir CI, Moraru I, Nechita BC, Colibaba C (2018) Evaluation of phenolic compounds content in grape seeds. Environ Eng Manag J 17:795–802. https://doi.org/10.30638/eemj.2018.080

    Article  Google Scholar 

  72. Shi J, Yu J, Pohorly JE, Kakuda Y (2003) Polyphenolics in grape seeds—biochemistry and functionality. J Med Food 6:291–299. https://doi.org/10.1089/109662003772519831

    Article  CAS  PubMed  Google Scholar 

  73. Peixoto CM, Dias MI, Alves MJ, Calhelha RC, Barros L, Pinho SP, Ferreira ICFR (2018) Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem 253:132–138. https://doi.org/10.1016/j.foodchem.2018.01.163

    Article  CAS  PubMed  Google Scholar 

  74. Silva A, Silva V, Igrejas G, Gaivão I, Aires A, Klibi N, de Enes Dapkevicius ML, Valentão P, Falco V, Poeta P (2021) Valorization of winemaking by-products as a novel source of antibacterial properties: new strategies to fight antibiotic resistance. Molecules 26:2331. https://doi.org/10.3390/molecules26082331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Meini M-R, Cabezudo I, Boschetti CE, Romanini D (2019) Recovery of phenolic antioxidants from syrah grape pomace through the optimization of an enzymatic extraction process. Food Chem 283:257–264. https://doi.org/10.1016/j.foodchem.2019.01.037

    Article  CAS  PubMed  Google Scholar 

  76. Drevelegka I, Goula AM (2020) Recovery of grape pomace phenolic compounds through optimized extraction and adsorption processes. Chem Eng Process Process Intensif 149:107845. https://doi.org/10.1016/j.cep.2020.107845

    Article  CAS  Google Scholar 

  77. Rodríguez Montealegre R, Romero Peces R, Chacón Vozmediano JL, Martínez Gascueña J, García Romero E (2006) Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J Food Compos Anal 19:687–693. https://doi.org/10.1016/j.jfca.2005.05.003

    Article  CAS  Google Scholar 

  78. Yu J, Ahmedna M (2013) Functional components of grape pomace: their composition, biological properties and potential applications. Int J Food Sci Technol 48:221–237. https://doi.org/10.1111/j.1365-2621.2012.03197.x

    Article  CAS  Google Scholar 

  79. Rockenbach II, Gonzaga LV, Rizelio VM, de Gonçalves AESS, Genovese MI, Fett R (2011) Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res Int 44:897–901. https://doi.org/10.1016/j.foodres.2011.01.049

    Article  CAS  Google Scholar 

  80. Xu Y, Burton S, Kim C, Sismour E (2016) Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia-grown grape varieties. Food Sci Nutr 4:125–133. https://doi.org/10.1002/fsn3.264

    Article  CAS  PubMed  Google Scholar 

  81. de la Cerda-Carrasco A, López-Solís R, Nuñez-Kalasic H, Peña-Neira Á, Obreque-Slier E (2015) Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). J Sci Food Agric 95:1521–1527. https://doi.org/10.1002/jsfa.6856

    Article  CAS  PubMed  Google Scholar 

  82. Iuga M, Mironeasa S (2020) Potential of grape byproducts as functional ingredients in baked goods and pasta. Compr Rev Food Sci Food Saf 19:2473–2505. https://doi.org/10.1111/1541-4337.12597

    Article  CAS  PubMed  Google Scholar 

  83. Gupta M, Dey S, Marbaniang D, Pal P, Ray S, Mazumder B (2020) Grape seed extract: having a potential health benefits. J Food Sci Technol 57:1205–1215. https://doi.org/10.1007/s13197-019-04113-w

    Article  CAS  PubMed  Google Scholar 

  84. Baiano A, Terracone C (2011) Varietal differences among the phenolic profiles and antioxidant activities of seven table grape cultivars grown in the South of Italy based on chemometrics. J Agric Food Chem 59:9815–9826. https://doi.org/10.1021/jf203003c

    Article  CAS  PubMed  Google Scholar 

  85. Lucarini M, Durazzo A, Kiefer J, Santini A, Lombardi-Boccia G, Souto E, Romani A, Lampe A, Ferrari Nicoli S, Gabrielli P et al (2019) Grape seeds: chromatographic profile of fatty acids and phenolic compounds and qualitative analysis by FTIR-ATR spectroscopy. Foods 9:10. https://doi.org/10.3390/foods9010010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Silva V, Igrejas G, Falco V, Santos TP, Torres C, Oliveira AMP, Pereira JE, Amaral JS, Poeta P (2018) Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 92:516–522. https://doi.org/10.1016/j.foodcont.2018.05.031

    Article  CAS  Google Scholar 

  87. Gómez-Mejía E, Roriz CL, Heleno SA, Calhelha R, Dias MI, Pinela J, Rosales-Conrado N, León-González ME, Ferreira ICFR, Barros L (2021) Valorisation of black mulberry and grape seeds: chemical characterization and bioactive potential. Food Chem 337:127998. https://doi.org/10.1016/j.foodchem.2020.127998

    Article  CAS  PubMed  Google Scholar 

  88. Silva V, Singh RK, Gomes N, Soares BG, Silva A, Falco V, Capita R, Alonso-Calleja C, Pereira JE, Amaral JS et al (2020) Comparative insight upon chitosan solution and chitosan nanoparticles application on the phenolic content, antioxidant and antimicrobial activities of individual grape components of Sousão variety. Antioxidants 9:178. https://doi.org/10.3390/antiox9020178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Garcia-Jares C, Vazquez A, Lamas J, Pajaro M, Alvarez-Casas M, Lores M (2015) Antioxidant white grape seed phenolics: pressurized liquid extracts from different varieties. Antioxidants 4:737–749. https://doi.org/10.3390/antiox4040737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ortega-Regules A, Romero-Cascales I, Ros-García JM, López-Roca JM, Gómez-Plaza E (2006) A first approach towards the relationship between grape skin cell-wall composition and anthocyanin extractability. Anal Chim Acta 563:26–32. https://doi.org/10.1016/j.aca.2005.12.024

    Article  CAS  Google Scholar 

  91. Pojer E, Mattivi F, Johnson D, Stockley CS (2013) The case for anthocyanin consumption to promote human health: a review: anthocyanins and human health: a review. Compr Rev Food Sci Food Saf 12:483–508. https://doi.org/10.1111/1541-4337.12024

    Article  CAS  PubMed  Google Scholar 

  92. Lacombe A, Wu VCH, Tyler S, Edwards K (2010) Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia Coli O157:H7. Int J Food Microbiol 139:102–107. https://doi.org/10.1016/j.ijfoodmicro.2010.01.035

    Article  CAS  PubMed  Google Scholar 

  93. Nieto JA, Santoyo S, Prodanov M, Reglero G, Jaime L (2020) Valorisation of grape stems as a source of phenolic antioxidants by using a sustainable extraction methodology. Foods 9:604. https://doi.org/10.3390/foods9050604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Doshi P, Adsule P, Banerjee K, Oulkar D (2015) Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L.) byproducts. J Food Sci Technol 52:181–190. https://doi.org/10.1007/s13197-013-0991-1

    Article  CAS  PubMed  Google Scholar 

  95. Ruiz-Moreno MJ, Raposo R, Cayuela JM, Zafrilla P, Piñeiro Z, Moreno-Rojas JM, Mulero J, Puertas B, Giron F, Guerrero RF et al (2015) Valorization of grape stems. Ind Crops Prod 63:152–157. https://doi.org/10.1016/j.indcrop.2014.10.016

    Article  CAS  Google Scholar 

  96. Arvanitoyannis IS, Ladas D, Mavromatis A (2006) Potential uses and applications of treated wine waste: a review. Int J Food Sci Technol 41:475–487. https://doi.org/10.1111/j.1365-2621.2005.01111.x

    Article  CAS  Google Scholar 

  97. Veskoukis AS, Vassi E, Poulas K, Kokkinakis M, Asprodini E, Haroutounian S, Kouretas D (2020) Grape stem extracts from three native greek vine varieties exhibit strong antioxidant and antimutagenic properties. Anticancer Res 40:2025–2032. https://doi.org/10.21873/anticanres.14159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the projects UIDB/CVT/00772/2020 and LA/P/0059/2020 funded by the Portuguese Foundation for Science and Technology (FCT). This work was supported by the Associate Laboratory for Green Chemistry—LAQV which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020). Vanessa Silva and Adriana Silva are grateful to FCT (Fundação para a Ciência e a Tecnologia) for financial support through the PhD grant SFRH/BD/137947/2018 and SFRH/BD/04576/2020, respectively.

Funding

Fundação para a Ciência e a Tecnologia (Grant nos. SFRH/BD/04576/2020, SFRH/BD/137947/2018).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AS, VS, GI, AA; methodology: AS, VS, VF, PV and PP; validation: AS, VF, PV and PP; formal analysis: AA; data curation: AS, VF, PV and PP; writing—original draft preparation: AS; writing—review and editing: AS and VS. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Patrícia Poeta.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Compliance with ethics Requirements

This study does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A., Silva, V., Igrejas, G. et al. Phenolic compounds classification and their distribution in winemaking by-products. Eur Food Res Technol 249, 207–239 (2023). https://doi.org/10.1007/s00217-022-04163-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-04163-z

Keywords

Navigation