Skip to main content
Log in

Vinegar production to valorise Citrus bergamia by-products

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In the bergamot (Citrus bergamia) processing cycle, peel and juice are the main by-products. Considering their high content in bioactive and aromatic compounds, the aim of this study was to valorise them in the vinegar industry. The proposal constitutes a model system for the global citrus industry, to improve the commercial value of the citrus wastes. The bioconversion of four juice combinations (based on bergamot fruit peel or juice) in eight wines and, after random choice, in four vinegars was tested. The chemical composition of wines and vinegars was determined, detecting a high permanence of a majority of the compounds of interest. The sensory analysis of the four vinegars before and after an oxidation treatment was performed obtaining good performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anwar F, Naseer R, Bhanger MI, Ashraf S, Talpur FN, Aladedunye FA (2008) Physico-chemical characteristics of citrus seeds and seed oils from Pakistan. J Am Oil Chem Soc 85:321–330

    Article  CAS  Google Scholar 

  2. Coll MD, Coll L, Laencina J, Tomás-Barberán FA (1998) Recovery of flavanones from wastes of industrially processed lemons. Z Lebensm Unters Forsch A 206:404–407

    Article  CAS  Google Scholar 

  3. Martín MA, Siles JA, Chica AF, Martín A (2010) Biomethanization of orange peel waste. Bioresour Technol 101:8993–8999

    Article  CAS  PubMed  Google Scholar 

  4. Rezzadori K, Benedetti S, Amante ER (2012) Proposals for the residues recovery: orange waste as raw material for new products. Food Bioprod Process 90:606–614

    Article  CAS  Google Scholar 

  5. Ademosun AO, Oboh G, Passamonti S, Tramer F, Ziberna L, Boligon AA, Athayde ML (2016) Phenolic composition of orange peels and modulation of redox status and matrix metalloproteinase activities in primary (Caco-2) and metastatic (LoVo and LoVo/ADR) colon cancer cells. Eur Food Res Technol 242:1949–1959

    Article  CAS  Google Scholar 

  6. Sharma K, Mahato N, Cho MH, Lee YR (2017) Converting citrus wastes into value-added products: economic and environmentally friendly approaches. Nutrition 34:29–46

    Article  CAS  PubMed  Google Scholar 

  7. Papoutsis K, Pristijono P, Golding JB, Stathopoulos CE, Bowyer MC, Scarlett CJ, Vuong QV (2018) Optimizing a sustainable ultrasound-assisted extraction method for the recovery of polyphenols from lemon by-products: comparison with hot water and organic solvent extractions. Eur Food Res Technol 244:1353–1365

    Article  CAS  Google Scholar 

  8. Gargouri B, Ammar S, Verardo V, Besbes S, Segura-Carretero A, Bouaziz M (2017) RP-HPLC-DAD-ESI-TOF-MS based strategy for new insights into the qualitative and quantitative phenolic profile in Tunisian Industrial Citrus limon by-product and their antioxidant activity. Eur Food Res Technol 243:2011–2024

    Article  CAS  Google Scholar 

  9. Loizzo MR, Leporini M, Sicari V, Falco T, Pellicanò TM, Tundis R (2018) Investigating the in vitro hypoglycaemic and antioxidant properties of Citrus × clementina Hort. Juice. Eur Food Res Technol 244:523–534

    Article  CAS  Google Scholar 

  10. Pernice R, Borriello G, Ferracane R, Borrelli RC, Cennamo F, Ritieni A (2009) Bergamot: a source of natural antioxidants for functionalized fruit juices. Food Chem 112:545–550

    Article  CAS  Google Scholar 

  11. Gabriele M, Frassinetti S, Caltavuturo L, Montero L, Dinelli G, Longo V, Di Gioia D, Pucci L (2017) Citrus bergamia powder: antioxidant, antimicrobial and anti-inflammatory properties. J Funct Foods 31:255–265

    Article  CAS  Google Scholar 

  12. Spigoni V, Mena P, Fantuzzi F, Tassotti M, Brighenti F, Bonadonna RC, Del Rio D, Dei Cas A (2017) Bioavailability of bergamot (Citrus bergamia) flavanones and biological activity of their circulating metabolites in human pro-angiogenic cells. Nutrients 9:1328. https://doi.org/10.3390/nu9121328

    Article  CAS  PubMed Central  Google Scholar 

  13. Di Donna L, De Luca G, Mazzotti F, Napoli A, Salerno R, Taverna D, Sindona G (2009) Statin-like principles of bergamot fruit: isolation of 3-hydroxymethylglutaryl flavonoid glycosides. J Nat Prod 72:1352–1354

    Article  CAS  PubMed  Google Scholar 

  14. Di Donna L, Gallucci G, Malaj N, Romano E, Tagarelli A, Sindona G (2011) Recycling of industrial essential oil waste: brutieridin and melitidin, two anticholesterolemic active principles from bergamot albedo. Food Chem 125:438–441

    Article  CAS  Google Scholar 

  15. Cai Y, Xing G, Shen T, Zhang S, Rao J, Shi R (2017) Effects of 12-week supplementation of Citrus bergamia extracts-based formulation CitriCholess on cholesterol and body weight in older adults with dyslipidemia: a randomized, double-blind, placebo-controlled trial. Lipids Health Dis 16:251. https://doi.org/10.1186/s12944-017-0640-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fiorillo M, Peiris-Pagès M, Sanchez-Alvarez R, Bartella L, Di Donna L, Dolce V, Sindona G, Sotgia F, Cappello AR, Lisanti MP (2018) Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, Rho-GDI-signaling and mitochondrial metabolism. BBA Bioenerg. https://doi.org/10.1016/j.bbabio.2018.03.018

    Article  Google Scholar 

  17. Caridi A, Manganaro R (1996) Prove di produzione di aceti aromatici da succo di bergamotto. Essenze Derivati Agrumari 66:376–388

    Google Scholar 

  18. Caridi A, Sidari R, Di Donna L, Sindona G (2012) Alcoholic fermentation of bergamot juice does not modify its anticholesterolemic compounds. In: 13th International congress on yeasts. HP87M, Madison, p 300

  19. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolourisation assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  20. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  21. Cirlini M, Caligiani A, Palla L, Palla G (2011) HS-SPME/GC-MS and chemometrics for the classification of balsamic vinegars of Modena of different maturation and ageing. Food Chem 124:1678–1683

    Article  CAS  Google Scholar 

  22. Mei-Ling W, Jih-Terng W, Youk-Meng C (2004) Simultaneous quantification of methanol and ethanol in alcoholic beverage using a rapid gas chromatographic method coupling with dual internal standards. Food Chem 86:609–615

    Article  CAS  Google Scholar 

  23. Liang N, Kitts DD (2016) Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 8:16. https://doi.org/10.3390/nu8010016

    Article  CAS  Google Scholar 

  24. Corder R, Mullen W, Khan NQ, Marks SC, Wood EG, Carrier MJ, Crozier A (2006) Red wine procyanidins and vascular health. Nature 444:566

    Article  CAS  PubMed  Google Scholar 

  25. Wu Q, Li S, Xiao J, Sui Y, Xie B, Sun Z (2017) Analysis of distribution and pharmacokinetics of litchi pericarp procyanidins in rat plasma and organs by using liquid chromatography–tandem mass spectrometry. Eur Food Res Technol 243:167–176

    Article  CAS  Google Scholar 

  26. Stojković D, Petrović J, Soković M, Glamočlija J, Kukić-Marković J, Petrović S (2013) In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J Sci Food Agric 93:3205–3208

    Article  CAS  PubMed  Google Scholar 

  27. Miyake Y, Suzuki E, Ohya S, Fukumoto S, Hiramitsu M, Sakaida K, Osawa T, Furuichi Y (2006) Lipid-lowering effect of eriocitrin, the main flavonoid in lemon fruit, in rats on a high-fat and high-cholesterol diet. J Food Sci 71:S633–S637

    Article  CAS  Google Scholar 

  28. Aslan E, Guler C, Adem S (2016) In vitro effects of some flavonoids and phenolic acids on human pyruvate kinase isoenzyme M2. J Enzyme Inhib Med Chem 31:314–317

    Article  CAS  PubMed  Google Scholar 

  29. Gürsul C, Akdemir FNE, Akkoyun T, Can İ, Gül M, Gülçin İ (2016) Protective effect of naringin on experimental hind limb ischemia/reperfusion injury in rats. J Enzyme Inhib Med Chem 31:56–61

    Article  CAS  PubMed  Google Scholar 

  30. Ahmadi A, Shadboorestan A (2016) Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr Cancer 68:29–39

    Article  CAS  PubMed  Google Scholar 

  31. Gong N, Zhang B, Yang D, Gao Z, Du G, Lu Y (2015) Development of new reference material neohesperidin for quality control of dietary supplements. J Sci Food Agric 95:1885–1891

    Article  CAS  PubMed  Google Scholar 

  32. Giuffrè AM, Zappia C, Capocasale M (2017) Physico-chemical stability of blood orange juice during frozen storage. Int J Food Prop 20:1930–1943. https://doi.org/10.1080/10942912.2017.1359184

    Article  CAS  Google Scholar 

  33. Fadda C, Fenu PAM, Usai G, Del Caro A, Diez YM, Sanguinetti AM, Piga A (2015) Antioxidant activity and sensory changes of strawberry tree fruits during cold storage and shelf life. Czech J Food Sci 33:531–536

    Article  CAS  Google Scholar 

  34. Priftis A, Stagos D, Konstantinopoulos K, Tsitsimpikou C, Spandidos DA, Tsatsakis AM, Tsatsazarakis MN, Kouretas D (2015) Comparison of antioxidant activity between green and roasted coffee beans using molecular methods. Mol Med Rep 12:7293–7302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andreu L, Nuncio-Jáuregui N, Carbonell-Barrachina ÁA, Legua P, Hernández F (2018) Antioxidant properties and chemical characterization of Spanish Opuntia ficus-indica Mill. cladodes and fruits. J Sci Food Agr 98:1566–1573

    Article  CAS  Google Scholar 

  36. Szychowski PJ, Lech K, Sendra-Nadal E, Hernández F, Figiel A, Wojdyło A, Carbonell-Barrachina ÁA (2018) Kinetics, biocompounds, antioxidant activity, and sensory attributes of quinces as affected by drying method. Food Chem 255:157–164

    Article  CAS  PubMed  Google Scholar 

  37. Giuffrè AM, Tellah S, Capocasale M, Zappia C, Latati M, Badiani M, Ounane SM (2016) Seed oil from ten Algerian peanut landraces for edible use and biodiesel production. J Oleo Sci 65:9–20. https://doi.org/10.5650/jos.ess15199

    Article  CAS  PubMed  Google Scholar 

  38. Giuffrè AM, Zappia C, Capocasale M (2017) Tomato seed oil for edible use: cold break, hot break and harvest year effects. J Food Process Pres 41:e13309. https://doi.org/10.1111/jfpp.13309

    Article  CAS  Google Scholar 

  39. Giuffrè AM, Caracciolo M, Zappia C, Capocasale M, Poiana M (2018) Effect of heating on chemical parameters of extra virgin olive oil, pomace olive oil, soybean oil and palm oil. Ital J Food Sci 30:715–739. https://doi.org/10.14674/IJFS-1269

    Article  Google Scholar 

  40. Suh KS, Chon S, Choi EM (2017) Limonene attenuates methylglyoxal-induced dysfunction in MC3T3-E1 osteoblastic cells. Food Agric Immunol 28:1256–1268

    Article  CAS  Google Scholar 

  41. Gunaseelan S, Balupillai A, Govindasamy K, Ramasamy K, Muthusamy G, Shanmugam M, Thangaiyan R, Robert BM, Nagarajan RP, Ponniresan VK, Rathinaraj P (2017) Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells. PLoS One 12(5):e0176699. https://doi.org/10.1371/journal.pone.0176699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Held S, Schieberle P, Somoza V (2007) Characterization of α-terpineol as an anti-inflammatory component of orange juice by in vitro studies using oral buccal cells. J Agric Food Chem 55:8040–8046

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to Prof Ferdinando Delfino and Dr Demetrio Melissari for their contribution concerning study conception and orchestration of the experiments. We express our sincere gratitude to Dr Nava Domenico, Dr Giuliano Delfino, and the staff of the Citrus Juices Company for their collaboration in the realization of the experiments.

Funding

The study was not specifically funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Caridi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethical requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giuffrè, A.M., Zappia, C., Capocasale, M. et al. Vinegar production to valorise Citrus bergamia by-products. Eur Food Res Technol 245, 667–675 (2019). https://doi.org/10.1007/s00217-018-3189-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3189-y

Keywords

Navigation