Skip to main content
Log in

Physicochemical properties and antioxidant activities of chocolates enriched with engineered cinnamon nanoparticles

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The use of nanocapsules to overcome incompatibility between bioactive compounds and food matrices targeting fortification has been widely acknowledged. This study provides a novel method to enhance the nutritional properties of chocolate by employing lyophilised colloidal nanoparticles made of a combination of shellac, xanthan gum and cinnamon extract. Lyophilised colloidal nanoparticles containing cinnamon extract (LCNP-CE) were prepared by an anti-solvent precipitation method followed by freeze drying. Cinnamon extract was loaded into nanoparticle to entrap the aroma of the cinnamon extract; thereby, the cinnamon extract can be incorporated in the chocolate to expand its bioactive profile without altering its sensorial characteristic. LCNP-CE was formulated into white and milk chocolate in multilevel ratios (0–2% w/w). The results show that the fortification of milk and white chocolates by LCNP-CE significantly improved the total phenolic content and antioxidant activity of the chocolates without remarkable changes in the fineness and melting profile properties. Even though slight changes in the hardness, flow behaviour and colour have been observed, the enriched chocolates are likely in the range of acceptable values. Encapsulation has a positive impact on preventing flavour alteration on the cinnamon enriched chocolates; however, a drawback in the release behaviour of the cinnamon extract from the chocolate was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bonilla J, Vargas FC, de Oliveira TG, da Aparecida Makishi GL, do Amaral Sobral PJ (2015) Recent patents on the application of bioactive compounds in food: a short review. Curr Opin Food Sci 5:1–7

    Article  Google Scholar 

  2. Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects—a review. J Funct Foods 18:820–897

    Article  CAS  Google Scholar 

  3. Tomé-Carneiro J, Visioli F (2015) Polyphenol-based nutraceuticals for the prevention and treatment of cardiovascular disease: review of human evidence. Phytomedicine 23(11):1145–1174

    Article  CAS  PubMed  Google Scholar 

  4. Muzolf-Panek M, Gliszczyńska-Świgło A, Szymusiak H, Tyrakowska B (2012) The influence of stereochemistry on the antioxidant properties of catechin epimers. Eur Food Res Technol 235(6):1001–1009

    Article  CAS  Google Scholar 

  5. Carrillo LC, Londoño-Londoño J, Gil A (2014) Comparison of polyphenol, methylxanthines and antioxidant activity in Theobroma cacao beans from different cocoa-growing areas in Colombia. Food Res Int 60:273–280

    Article  CAS  Google Scholar 

  6. Evina VJE, De Taeye C, Niemenak N, Youmbi E, Collin S (2016) Influence of acetic and lactic acids on cocoa flavan-3-ol degradation through fermentation-like incubations. LWT Food Sci Technol 68:514–522

    Article  CAS  Google Scholar 

  7. Żyżelewicz D, Krysiak W, Oracz J, Sosnowska D, Budryn G, Nebesny E (2016) The influence of the roasting process conditions on the polyphenol content in cocoa beans, nibs and chocolates. Food Res Int 89(2):918–929

    Article  Google Scholar 

  8. Di Mattia C, Martuscelli M, Sacchetti G, Beheydt B, Mastrocola D, Pittia P (2014) Effect of different conching processes on procyanidin content and antioxidant properties of chocolate. Food Res Int 63:367–372

    Article  CAS  Google Scholar 

  9. Schinella G, Mosca S, Cienfuegos-Jovellanos E, Pasamar M, Muguerza B, Ramón D, Ríos JL (2010) Antioxidant properties of polyphenol-rich cocoa products industrially processed. Food Res Int 43(6):1614–1623

    Article  CAS  Google Scholar 

  10. Albak F, Tekin AR (2014) The effect of addition of ingredients on physical propertıes of dark chocolate during conching. Basic Res J Food Sci Technol 1(7):51–59

    Google Scholar 

  11. Belščak-Cvitanović A, Komes D, Benković M, Karlović S, Hečimović I, Ježek D, Bauman I (2012) Innovative formulations of chocolates enriched with plant polyphenols from Rubus idaeus L. leaves and characterization of their physical, bioactive and sensory properties. Food Res Int 48(2):820–830

    Article  CAS  Google Scholar 

  12. Belščak-Cvitanović A, Komes D, Durgo K, Vojvodić A, Bušić A (2015) Nettle (Urtica dioica L.) extracts as functional ingredients for production of chocolates with improved bioactive composition and sensory properties. ‎J Food Sci Technol 52(12):7723–7734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dean LL, Klevorn CM, Hess BJ (2016) Minimizing the negative flavor attributes and evaluating consumer acceptance of chocolate fortified with peanut skin extracts. J Food Sci 81(11):S2824-S2830

    Article  CAS  Google Scholar 

  14. Gültekin-Özgüven M, Karadağ A, Duman Ş, Özkal B, Özçelik B (2016) Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies. Food Chem 201:205–212

    Article  CAS  PubMed  Google Scholar 

  15. Morais Ferreira JM, Azevedo BM, Luccas V, Bolini HMA (2016) Isosweetness concentrations of sucrose and high-intensity sweeteners and antioxidant activity in white chocolate with functional properties. Int J Food Sci Technol 51(9):2114–2122

    Article  CAS  Google Scholar 

  16. Sim SYJ, Ng JW, Ng WK, Forde CG, Henry CJ (2016) Plant polyphenols to enhance the nutritional and sensory properties of chocolates. Food Chem 200:46–54

    Article  CAS  PubMed  Google Scholar 

  17. Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez-Alvarez JA (2010) Spices as functional foods. Crit Rev Food Sci Nutr 51(1):13–28

    Article  CAS  Google Scholar 

  18. Brito RE, González-Rodríguez J, Montoya MR, Mellado JMR (2017) Comparison of the volatile antioxidant contents in the aqueous and methanolic extracts of a set of commercial spices and condiments. Eur Food Res Technol 243:1439–1445

    Article  CAS  Google Scholar 

  19. Muhammad DRA, Praseptiangga D, Van de Walle D, Dewettinck K (2017) Interaction between natural antioxidants derived from cinnamon and cocoa in binary and complex mixtures. Food Chem 231:356–364

    Article  CAS  PubMed  Google Scholar 

  20. Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10(4):221–247

    Article  CAS  Google Scholar 

  21. Helal A, Tagliazucchi D, Verzelloni E, Conte A (2014) Bioaccessibility of polyphenols and cinnamaldehyde in cinnamon beverages subjected to in vitro gastro-pancreatic digestion. J Funct Foods 7:506–516

    Article  CAS  Google Scholar 

  22. Klejdus B, Kováčik J (2016) Quantification of phenols in cinnamon: a special focus on “total phenols” and phenolic acids including DESI-Orbitrap MS detection. Ind Crops Prod 83:774–780

    Article  CAS  Google Scholar 

  23. Lv J, Huang H, Yu L, Whent M, Niu Y, Shi H, Wang TTY, Luthria D, Charles D, Yu LL (2012) Phenolic composition and nutraceutical properties of organic and conventional cinnamon and peppermint. Food Chem 132(3):1442–1450

    Article  CAS  PubMed  Google Scholar 

  24. Shan B, Cai YZ, Sun M, Corke H (2005) Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 53(20):7749–7759

    Article  CAS  PubMed  Google Scholar 

  25. Vallverdú-Queralt A, Regueiro J, Martínez-Huélamo M, Alvarenga JFR, Leal LN, Lamuela-Raventos RM (2014) A comprehensive study on the phenolic profile of widely used culinary herbs and spices: rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem 154:299–307

    Article  CAS  PubMed  Google Scholar 

  26. Bacanlı M, Başaran AA, Başaran N (2015) The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin. Food Chem Toxicol 81:160–170

    Article  CAS  PubMed  Google Scholar 

  27. Jiao L, Zhang X, Huang L, Gong H, Cheng B, Sun Y, Li Y, Liu Q, Zheng L, Huang K (2013) Proanthocyanidins are the major anti-diabetic components of cinnamon water extract. Food Chem Toxicol 56:398–405

    Article  CAS  PubMed  Google Scholar 

  28. Khare P, Jagtap S, Jain Y, Baboota RK, Mangal P, Boparai RK, Bhutani KK, Sharma SS, Premkumar LS, Kondepudi KK (2016) Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice. BioFactors 42(2):201–211

  29. Nićiforović N, Abramovič H (2014) Sinapic acid and its derivatives: natural sources and bioactivity. Compr Rev Food Sci Food Saf 13(1):34–51

    Article  CAS  Google Scholar 

  30. Peana AT, D’Aquila PS, Panin F, Serra G, Pippia P, Moretti MDL (2002) Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 9(8):721–726

    Article  CAS  PubMed  Google Scholar 

  31. de Oliveira MMM, Brugnera DF, do Nascimento JA, Batista NN, Piccoli RH (2012) Cinnamon essential oil and cinnamaldehyde in the control of bacterial biofilms formed on stainless steel surfaces. Eur Food Res Technol 234(5):821–832

    Article  CAS  Google Scholar 

  32. Muhammad DRA, Dewettinck K (2017) Cinnamon and its derivatives as potential ingredients in functional foods—a review. Int J Food Prop. https://doi.org/10.1080/10942912.2017.1369102

    Article  Google Scholar 

  33. Ariaee-Nasab N, Vahedi Z, Vahedi F (2014) Inhibitory effects of cinnamon-water extract on human tumor cell lines. Asian Pac J Trop Dis 4::S975-S978

    Article  Google Scholar 

  34. Hong JW, Yang GE, Kim YB, Eom SH, Lew JH, Kang H (2012) Anti-inflammatory activity of cinnamon water extract in vivo and in vitro LPS-induced models. BMC Complement Altern Med 12:237:1–9

    Google Scholar 

  35. Li R, Liang T, Xu L, Li Y, Zhang S, Duan X (2013) Protective effect of cinnamon polyphenols against STZ-diabetic mice fed high-sugar, high-fat diet and its underlying mechanism. Food Chem Toxicol 51:419–425

    Article  CAS  PubMed  Google Scholar 

  36. Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crops Prod 62:250–264

    Article  CAS  Google Scholar 

  37. Yeh CF, San Chang J, Wang KC, Shieh DE, Chiang LC (2013) Water extract of Cinnamomum cassia Blume inhibited human respiratory syncytial virus by preventing viral attachment, internalization, and syncytium formation. J Ethnopharmacol 147(2):321–326

    Article  CAS  PubMed  Google Scholar 

  38. Durak A, Gawlik-Dziki U, Pecio Ł (2014) Coffee with cinnamon—impact of phytochemicals interactions on antioxidant and anti-inflammatory in vitro activity. Food Chem 162:81–88

    Article  CAS  PubMed  Google Scholar 

  39. Shori AB, Baba AS (2011) Cinnamomum verum improved the functional properties of bioyogurts made from camel and cow milks. J Saudi Soc Agric Sci 10(2):101–107

    CAS  Google Scholar 

  40. Albak F, Tekin AR (2015) Effect of cinnamon powder addition during conching on the flavor of dark chocolate mass. J Food Sci Technol 52(4):1960–1970

    Article  CAS  PubMed  Google Scholar 

  41. Fang Z, Bhandari B (2012) Encapsulation techniques for food ingredient systems. Food materials science and engineering. Wiley, Chichester

    Google Scholar 

  42. Huang Q, Yu H, Ru Q (2010) Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci 75(1):R50-R57

    Google Scholar 

  43. Velikov KP, Pelan E (2008) Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter 4(10):1964–1980

    Article  CAS  Google Scholar 

  44. Esfanjani AF, Jafari SM (2016) Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf B 146:532–543

    Article  CAS  Google Scholar 

  45. Katouzian I, Jafari SM (2016) Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci Technol 53:34–48

    Article  CAS  Google Scholar 

  46. Pandita D, Kumar S, Poonia N, Lather V (2014) Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res Int 62:1165–1174

    Article  CAS  Google Scholar 

  47. Ramalingam P, Yoo SW, Ko YT (2016) Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res Int 84:113–119

    Article  CAS  Google Scholar 

  48. Zou L, Zheng B, Zhang R, Zhang Z, Liu W, Liu C, Xiao H, McClements DJ (2016) Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles. Food Res Int 81:74–82

    Article  CAS  Google Scholar 

  49. Peters RJB, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJP, Mech A, Moniz FB, Pesudo LQ (2016) Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol 54:155–164

    Article  CAS  Google Scholar 

  50. Patel A, Heussen P, Hazekamp J, Velikov KP (2011) Stabilisation and controlled release of silibinin from pH responsive shellac colloidal particles. Soft Mater 7(18):8549–8555

    Article  CAS  Google Scholar 

  51. Belščak A, Komes D, Horžić D, Ganić KK, Karlović D (2009) Comparative study of commercially available cocoa products in terms of their bioactive composition. Food Res Int 42(5):707–716

    Article  Google Scholar 

  52. Saputro AD, Van de Walle D, Aidoo RP, Mensah MA, Delbaere C, De Clercq N, Van Durme J, Dewettinck K (2016) Quality attributes of dark chocolates formulated with palm sap-based sugar as nutritious and natural alternative sweetener. Eur Food Res Technol 243(2):177–191

    Article  CAS  Google Scholar 

  53. Tran PD, Van de Walle D, Hinneh M, Delbaere C, De Clercq N, Tranb DN, Dewettinck K (2015) Controlling the stability of chocolates through the incorporation of soft and hard StOSt-rich fats. Eur J Lipid Sci Technol 117(11):1700–1713

    Article  CAS  Google Scholar 

  54. Konar N, Özhan B, Artık N, Dalabasmaz S, Poyrazoglu ES (2014) Rheological and physical properties of inulin-containing milk chocolate prepared at different process conditions. CyTA J Food 12(1):55–64

    Article  CAS  Google Scholar 

  55. Erdem Ö, Gültekin-Özgüven M, Berktaş I, Erşan S, Tuna HE, Karadağ A, Özçelik B, Güneş G, Cutting SM (2014.) Development of a novel synbiotic dark chocolate enriched with Bacillus indicus HU36, maltodextrin and lemon fiber: optimization by response surface methodology. LWT Food Sci Technol 56(1):187–193

    Article  CAS  Google Scholar 

  56. Sanz T, Salvador A, Jimenez A, Fiszman SM (2008) Yogurt enrichment with functional asparagus fibre. Effect of fibre extraction method on rheological properties, colour, and sensory acceptance. Eur Food Res Technol 227(5):1515–1521

    Article  CAS  Google Scholar 

  57. Meng CC, Jalil AMM, Ismail A (2009) Phenolic and theobromine contents of commercial dark, milk and white chocolates on the Malaysian market. Molecules 14(1):200–209

    Article  CAS  PubMed  Google Scholar 

  58. Boeing JS, Barizão ÉO, e Silva BC, Montanher PF, de Cinque Almeida V, Visentainer JV (2014) Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chem Cent J 8:48:1–48:9

    Article  CAS  Google Scholar 

  59. Budryn G, Zaczyńska D, Rachwał-Rosiak D (2016) Changes of free and nanoencapsulated hydroxycinnamic acids from green coffee added to different food products during processing and in vitro enzymatic digestion. Food Res Int 89:1004–1014

    Article  CAS  Google Scholar 

  60. Liu GY, Wang JM, Xia Q (2012) Application of nanostructured lipid carrier in food for the improved bioavailability. Eur Food Res Technol 234(3):391–398

    Article  CAS  Google Scholar 

  61. Campos DA, Madureira AR, Sarmento B, Gomes AM, Pintado MM (2015) Stability of bioactive solid lipid nanoparticles loaded with herbal extracts when exposed to simulated gastrointestinal tract conditions. Food Res Int 78:131–140

    Article  CAS  PubMed  Google Scholar 

  62. Gibis M, Ruedt C, Weiss J (2016) In vitro release of grape-seed polyphenols encapsulated from uncoated and chitosan-coated liposomes. Food Res Int 88:105–113

    Article  CAS  PubMed  Google Scholar 

  63. Tagliazucchi D, Helal A, Verzelloni E, Conte A (2012) The type and concentration of milk increase the in vitro bioaccessibility of coffee chlorogenic acids. J Agric Food Chem 60(44):11056–11064

    Article  CAS  PubMed  Google Scholar 

  64. Werlein HD (2001) Discrimination of chocolates and packaging materials by an electronic nose. Eur Food Res Technol 212(4):529–533

    Article  CAS  Google Scholar 

  65. Jirovetz L, Buchbauer G, Ngassoum M, Geissler M (2002) Aroma compound analysis of Piper nigrum and Piper guineense essential oil from Cameroon using solid-phase microextraction–gas chromatography, solid-phase microextraction–gas chromatography–mass spectrometry and olfactometry. J Chromatogr A 976(1):265–275

    Article  CAS  PubMed  Google Scholar 

  66. Mahattanatawee K, Goodner KL, Baldwin EA (2005) Volatile constituents and character impact compounds of selected Florida’s tropical fruit. Proc Fla State Hort Soc 118:414–418

    Google Scholar 

  67. European Food Safety Authority (2004) Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to Coumarin. EFSA J 104:1–36

    Google Scholar 

  68. Solaiman R, Al-Zehouri J (2017) Determination of coumarin in methanol extract of cinnamon (Cinnamomum cassia Blume) using reversed phase high performance liquid chromatography. J Pharmacogn Phytochem (4):726–729

  69. Ziegler GR, Mongia G, Hollender R (2001) The role of particle size distribution of suspended solids in defining the sensory properties of milk chocolate. Int J Food Prop 4(2):353–370

    Article  Google Scholar 

  70. Afoakwa EO, Paterson A, Fowler M (2007) Factors influencing rheological and textural qualities in chocolate—a review. Trends Food Sci Technol 18(6):290–298

    Article  CAS  Google Scholar 

  71. Bordin Schumacher A, Brandelli A, Schumacher EW, Carrion Macedo F, Pieta L, Venzke Klug T, Vogt de Jong E (2009) Development and evaluation of a laboratory scale conch for chocolate production. Int J Food Sci Technol 44(3):616–622

    Article  CAS  Google Scholar 

  72. Sokmen A, Gunes G (2006) Influence of some bulk sweeteners on rheological properties of chocolate. LWT Food Sci Technol 39(10):1053–1058

    Article  CAS  Google Scholar 

  73. Bolenz S, Manske A (2013) Impact of fat content during grinding on particle size distribution and flow properties of milk chocolate. Eur Food Res Technol 236(5):863–872

    Article  CAS  Google Scholar 

  74. Beckett ST (2009) Chocolate flow properties. Industrial chocolate manufacture and use, 4th edn, pp 224–246

  75. Torres JKF, Stephani R, Tavares GM, De Carvalho AF, Costa RGB, de Almeida CER, … Perrone IT (2017) Technological aspects of lactose-hydrolyzed milk powder. Food Res Int 101:45–53

    Article  CAS  PubMed  Google Scholar 

  76. Yamashita C, Chung MMS, dos Santos C, Mayer CRM, Moraes ICF, Branco IG (2017) Microencapsulation of an anthocyanin-rich blackberry (Rubus spp.) by-product extract by freeze–drying. LWT Food Sci Technol https://doi.org/10.1016/j.lwt.2017.05.063

    Article  Google Scholar 

  77. Aidoo RP, Afoakwa EO, Dewettinck K (2014) Optimization of inulin and polydextrose mixtures as sucrose replacers during sugar-free chocolate manufacture—rheological, microstructure and physical quality characteristics. J Food Eng 126:35–42

    Article  CAS  Google Scholar 

  78. Żyżelewicz D, Nebesny E, Motyl I, Libudzisz Z (2010) Effect of milk chocolate supplementation with lyophilized Lactobacillus cells on its attributes. Czech J Food Sci 28(5):392–406

    Article  Google Scholar 

  79. Saputro AD, Van de Walle D, Kadivar S, Mensah MA, Van Durme J, Dewettinck K (2016) Feasibility of a small-scale production system approach for palm sugar sweetened dark chocolate. Eur Food Res Technol 243(6):955–967

    Article  CAS  Google Scholar 

  80. Amir IZ, Sharon WXR, Syafiq A (2013) D-Optimal mixture design on melting and textural properties of dark chocolate as affected by cocoa butter substitution with Xanthan gum/Guar gum blends. Int Food Res J 20(4):1991–1995

    Google Scholar 

  81. Rezende NV, Benassi MT, Vissotto FZ, Augusto PPC, Grossmann MVE (2015) Effects of fat replacement and fibre addition on the texture, sensory acceptance and structure of sucrose-free chocolate. Int J Food Sci Technol 50(6):1413–1420

    Article  CAS  Google Scholar 

  82. Stortz TA, Marangoni AG (2011) Heat resistant chocolate. Trends Food Sci Technol 22(5):201–214

    Article  CAS  Google Scholar 

  83. Saputro AD, Van de Walle D, Kadivar S, Sintang MDB, Van der Meeren P, Dewettinck K (2017) Investigating the rheological, microstructural and textural properties of chocolates sweetened with palm sap-based sugar by partial replacement. Eur Food Res Technol 243(10):1729–1738

    Article  CAS  Google Scholar 

  84. Konar N (2013) Influence of conching temperature and some bulk sweeteners on physical and rheological properties of prebiotic milk chocolate containing inulin. Eur Food Res Technol 236(1):135–143

    Article  CAS  Google Scholar 

  85. Aidoo RP, Appah E, Van de Walle D, Afoakwa EO, Dewettinck K (2017) Functionality of inulin and polydextrose as sucrose replacers in sugar-free dark chocolate manufacture—effect of fat content and bulk mixture concentration on rheological, mechanical and melting properties. Int J Food Sci Technol 52(1):282–290

    Article  CAS  Google Scholar 

  86. Do TA, Hargreaves JM, Wolf B, Hort J, Mitchell JR (2007) Impact of particle size distribution on rheological and textural properties of chocolate models with reduced fat content. J Food Sci 72(9):E541-E552

    Article  CAS  Google Scholar 

  87. Belščak-Cvitanović A, Komes D, Durgo K, Vojvodić A, Bušić A (2015) Nettle (Urtica dioica L.) extracts as functional ingredients for production of chocolates with improved bioactive composition and sensory properties. J Food Sci Technol 52(12):7723–7734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Afoakwa EO, Paterson A, Fowler M, Vieira J (2008) Relationship between rheological, textural and melting properties of dark chocolate as influenced by particle size distribution and composition. Eur Food Res Technol 227(4):1215–1223

    Article  CAS  Google Scholar 

  89. Mongia G, Ziegler GR (2000) The role of particle size distribution of suspended solids in defining the flow properties of milk chocolate. Int J Food Prop 3(1):137–147

    Article  CAS  Google Scholar 

  90. Habibi H, Khosravi-Darani K (2017) Effective variables on production and structure of xanthan gum and its food applications: a review. Biocatal Agric Biotechnol 10:130–140

    Google Scholar 

  91. Goulart DB, Hartel RW (2017) Lactose crystallization in milk protein concentrate and its effects on rheology. J Food Eng https://doi.org/10.1016/j.jfoodeng.2017.05.012

    Article  Google Scholar 

  92. Glicerina V, Balestra F, Dalla Rosa M, Romani S (2016) Microstructural and rheological characteristics of dark, milk and white chocolate: a comparative study. J Food Eng 169:165–171

    Article  Google Scholar 

  93. De Clercq N, Moens K, Depypere F, Ayala JV, Calliauw G, De Greyt W, Dewettinck K (2012) Influence of cocoa butter refining on the quality of milk chocolate. J Food Eng 111(2):412–419

    Article  CAS  Google Scholar 

  94. Afoakwa EO, Paterson A, Fowler M, Vieira J (2008) Characterization of melting properties in dark chocolates from varying particle size distribution and composition using differential scanning calorimetry. Food Res Int 41(7):751–757

    Article  CAS  Google Scholar 

  95. Chen S, Wu G, Sha M, Huang S (2007) Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes. J Am Chem Soc 129(9):2416–2417

    Article  CAS  PubMed  Google Scholar 

  96. Truong T, Palmer M, Bansal N, Bhandari B (2017) Effect of solubilised carbon dioxide at low partial pressure on crystallisation behaviour, microstructure and texture of anhydrous milk fat. Food Res Int 95:82–90

    Article  CAS  PubMed  Google Scholar 

  97. Popov-Raljić JV, Laličić-Petronijević JG (2009) Sensory properties and color measurements of dietary chocolates with different compositions during storage for up to 360 days. Sensors 9(3):1996–2016

    Article  PubMed  Google Scholar 

  98. Żyżelewicz D, Krysiak W, Nebesny E, Budryn G (2014) Application of various methods for determination of the color of cocoa beans roasted under variable process parameters. Eur Food Res Technol 238(4):549–563

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Directorate General of Higher Education, Ministry of Research, Technology, and Higher Education, Republic of Indonesia (Grant number: 15.1/E4.4/2015). Hercules Foundation is acknowledged for its financial support in the acquisition of the Scanning Electron Microscope JEOL JSM-7100F equipped with cryo-transfer system Quorum PP3000T and Oxford Instruments Aztec EDS (Grant number: AUGE-09-029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimas Rahadian Aji Muhammad.

Ethics declarations

Conflict of interest

None.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, D.R.A., Saputro, A.D., Rottiers, H. et al. Physicochemical properties and antioxidant activities of chocolates enriched with engineered cinnamon nanoparticles. Eur Food Res Technol 244, 1185–1202 (2018). https://doi.org/10.1007/s00217-018-3035-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3035-2

Keywords

Navigation