Skip to main content
Log in

Dipeptidyl peptidase IV inhibitory peptides from Chlorella vulgaris: in silico gastrointestinal hydrolysis and molecular mechanism

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Chlorella vulgaris: is a nutritional food with high protein content. Thus, 43 protein sequences from C. vulgaris were in silico gastrointestinal digested with the aid of BIOPEP. A peptide library of 468 di- and tri-peptides was built from the produced peptides. Six peptides, AAR, VPA, VPW, IPL, IPR, and PPL, were selected for DPP-IV inhibitory assay based on their sequence feature with Pro or Ala at the second N-terminal site. VPA, VPW, IPL, and IPR had potency of DPP-IV inhibition. VPW and IPR with the same N-terminal and second N-terminal sites as those of diprotin A (IPI) and diprotin B (VPL) achieved relative inhibitory IC50 value of 6.4 and 6.9 versus IPI. These peptides were further demonstrated gastrointestinal stable in vitro and could also inhibit the DPP-IV in mouse serum. Molecular docking illustrated the inhibitory mechanism of VPW and IPR. Both VPW and IPR binding with DPP-IV through hydrogen bonds, van Edward Mars interactions, and hydrophobic interactions. However, VPW formed more stable interaction with DPP-IV. The results suggested that C. vulgaris proteins would be a good source for DPP-IV inhibitory peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. International Diabetes Federation (2015) IDF Diabetes Atlas, 7th edn. International Diabetes Federation. Brussels

    Google Scholar 

  2. Lacroix IME, Li-Chan ECY (2016) Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation—current knowledge and future research considerations. Trends Food Sci Tech 54:1–16

    Article  CAS  Google Scholar 

  3. Nongonierma AB, Fitzgerald RJ (2013) Inhibition of dipeptidyl peptidase IV (DPP-IV) by tryptophan containing dipeptides. Food Func 4:1843–1849

    Article  CAS  Google Scholar 

  4. Huang SL, Jao CL, Ho KP, Hsu KC (2012) Dipeptidyl peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates. Peptides 35:114–121

    Article  CAS  Google Scholar 

  5. Hatanaka T, Inoue Y, Arima J, Kumagai Y, Usuki H, Kawakami K, Kimura M, Mukaihara T (2012) Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran. Food Chem 134:797–802

    Article  CAS  Google Scholar 

  6. Uenishi H, Kabuki T, Seto Y, Serizawa A, Nakajima H (2012) Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Int Dairy J 22:2430

    Article  Google Scholar 

  7. Li-Chan EC, Hunag SL, Jao CL, Ho KP, Hsu KC (2012) Peptides derived from Atlantic salmon skin gelatin as dipeptidyl peptidase IV inhibitors. J Agr Food Chem 60:973–978

    Article  CAS  Google Scholar 

  8. Babij K, Dabrowska A, Szoltysik M, Pokora M, Zambrowicz A, Chrzanowska J (2014) The evaluation of dipeptidyl peptidase (DPP)-IV, -glucosidase and angiotensin converting enzyme (ACE) inhibitory activities of whey proteins hydrolyzed with serine protease isolated from Asian Pumpkin (Cucurbita ficifolia). Int J Pept Res Ther 20:483–491

    Article  Google Scholar 

  9. Huang SL, Hung CC, Jao CL, Tung YS, Hsu KC (2014) Porcine skin gelatin hydrolysate as a dipeptidyl peptidase IV inhibitor improves glycemic control in streptozotocin-induced diabetic rats. J Func Foods 11:235–242

    Article  CAS  Google Scholar 

  10. Hamed I. (2016) The evolution and versatility of microalgal biotechnology: a review. Compr Rev Food Sci 15:1104–1123

    Article  Google Scholar 

  11. Li Y, Horsman M, Wu N, Lan CQ, Dubois Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  Google Scholar 

  12. Certik M, Adamechova Z (2009) Cereal-based bioproducts containing polyunsaturated fatty acids. Lipid Technol 21:250–253

    Article  CAS  Google Scholar 

  13. Morita K, Matsueda T, Iida T, Hasegawa T (1999) Chlorella accelerates dioxin excretion in rats. J Nutr 129:1731–1736

    CAS  Google Scholar 

  14. Czerpak R, Piotrowska A, Wierzbowska M (2003) Biochemical activity of biochanin A in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). Pol J Environ Stud 12:163–169

    CAS  Google Scholar 

  15. Mahboob S, Rauf A, Ashraf M, Sultana T, Sultana S, Jabeen F, Rajoka M, Al-Balawi H, Al-Ghanim K (2012) High-density growth and crude protein productivity of a thermotolerant Chlorella vulgaris: production kinetics and thermodynamics. Aquacult Int 20:455–466

    Article  CAS  Google Scholar 

  16. Samarakoon K, Jeon Y-J (2012) Bio-functionalities of proteins derived from marine algae—a review. Food Res Int 48:948–960

    Article  CAS  Google Scholar 

  17. Suetsuna K, Chen JR (2001) Identification of antihypertensive peptides from peptic gigest of two microalgae, Chlorella vulgaris and Spirulina platensis. Mar Biotechnol 3:305–309

    Article  CAS  Google Scholar 

  18. Liu Y, Zhang L, Guo M, Wu H, Xie J, Wei D (2014) Virtual screening for angiotensin I-converting enzyme inhibitory peptides from Phascolosoma esculenta. Bioresour Bioprocess 1:1–9

    Article  Google Scholar 

  19. Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, Darewicz M (2008) BIOPEP database and other programs for processing bioactive peptide sequences. J AOAC INT 91:965–980

    CAS  Google Scholar 

  20. Lafarga T, O’Connor P, Hayes M (2014) Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis. Peptides 59:53–62

    Article  CAS  Google Scholar 

  21. Marambe HK, Shand PJ, Wanasundara JP (2011) Release of angiotensin I-converting enzyme inhibitory peptides from flaxseed (Linum usitatissimum L.) protein under simulated gastrointestinal digestion. J Agric Food Chem 59:9596–9604

    Article  CAS  Google Scholar 

  22. Wu J, Ding X (2002) Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Res Int 35:367–375

    Article  CAS  Google Scholar 

  23. Tahara A, Matsuyama-Yokono A, Nakano R, Someya Y, Hayakawa M, Shibasaki M (2009) Antihyperglycemic effects of ASP8497 in streptozotocin-nicotinamide induced diabetic rats: comparison with other dipeptidyl peptidase-IV inhibitors. Pharmacol Rep 61:899–908

    Article  CAS  Google Scholar 

  24. Beesley CE, Young EP, Finnegan N, Jackson M, Mills K, Vellodi A, Cleary M, Winchester BG (2009) Discovery of a new biomarker for the mucopolysaccharidoses (MPS), dipeptidyl peptidase IV (DPP-IV; CD26), by SELDI-TOF mass spectrometry. Mol Genet Metab 96:218–224

    Article  CAS  Google Scholar 

  25. Hiramatsu H, Yamamoto A, Kyono K, Higashiyama Y, Fukushima C, Shima H, Sugiyama S, Inaka K, Shimizu R (2005) The crystal structure of human dipeptidyl peptidase IV (DPP-IV) complex with diprotin A. Biol Chem 385:561–564

    Google Scholar 

  26. Li-Chan EC (2015) Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Curr Opin Food Sci 1:28–37

    Article  Google Scholar 

  27. Martínez-Alvarez O (2013) Hormone-like peptides obtained by marine-protein hydrolysis and their bioactivities. In: Kim S-K (ed) Marine proteins and peptides: biological activities and applications. Wiley-Blackwell, New Jersey, pp 351–367

    Chapter  Google Scholar 

  28. Darewicz M, Borawska J, Vegarud GE, Minkiewicz P, Iwaniak A (2014) Angiotensin I-converting enzyme (ACE) inhibitory activity and ACE inhibitory peptides of salmon (Salmo salar) protein hydrolysates obtained by human and porcine gastrointestinal enzymes. Int J Mol Sci 15:14077–14101

    Article  CAS  Google Scholar 

  29. Capriotti AL, Cavaliere C, Foglia P, Piovesana S, Samperi R, Zenezini Chiozzi R, Laganà A (2015) Development of an analytical strategy for the identification of potential bioactive peptides generated by in vitro tryptic digestion of fish muscle proteins. Anal Bioanal Chem 407:845–854

    Article  CAS  Google Scholar 

  30. Toopcham T, Roytrakul S, Yongsawatdigul J (2015) Characterization and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from tilapia using Virgibacillus halodenitrificans SK1-3-7 proteinases. J Funct Foods 14:435–444

    Article  CAS  Google Scholar 

  31. Lan VT, Ito K, Ohno M, Motoyama T, Ito S, Kawarasaki Y (2015) Analyzing a dipeptide library to identify human dipeptidyl peptidase IV Inhibitor. Food Chem 175:66–73

    Article  CAS  Google Scholar 

  32. Nongonierma AB, Mooney C, Shields DC, Fitzgerald RJ (2014) In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors. Peptides 57:43–51

    Article  CAS  Google Scholar 

  33. Yan TR, Ho SC, Hou CL (1992) Catalytic properties of X-prolyl dipeptidyl aminopeptidasecfrom Lactococcus lactis subsp. cremoris nTR. Biosci Biotechnol Biochem 56:704–707

    Article  CAS  Google Scholar 

  34. Bjelke JD, Christensen J, Nielsen PF, Branner S, Kanstroup AB, Wagtmann N, Rasmussen HB (2006) Dipeptidyl peptidases 8 and 9: Specificity and molecular characterization compared with dipeptidyl peptidase IV. Biochem J 396:391–399

    Article  CAS  Google Scholar 

  35. Umezawa H, Aoyagi T, Ogawa K, Naganawa H, Hamada M, Takeuchi T (1984) Diprotins A and B, inhibitors of dipeptidyl aminopeptidase IV, produced by bacteria. J Antibiot 37:422–425

    Article  CAS  Google Scholar 

  36. Nongonierma AB, Fitzgerald RJ (2014) An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chem 165:489–498

    Article  CAS  Google Scholar 

  37. Harnedy PA, O’Keeffe MB, FitzGerald RJ (2015) Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmate. Food Chem 172:400–406

    Article  CAS  Google Scholar 

  38. Escudero E, Mora L, Toldrá F (2014) Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion. Food Chem 161:305–311

    Article  CAS  Google Scholar 

  39. Cistola DP, Robinson MD (2016) Compact NMR relaxometry of human blood and blood components. TrAC-Trend. Anal Chem 83:53–64

    CAS  Google Scholar 

  40. Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705

    Article  CAS  Google Scholar 

  41. Van Horn L, McCoin M, Kris-Etherton PM, Burke F, Carson JA, Champagne CM, Karmally W, Sikand G (2008) The evidence for dietary prevention and treatment of cardiovascular disease. J Am Diet Assoc 108:287–331

    Article  Google Scholar 

  42. Wang TY, Hsieh CH, Hung CC, Jaoe CL, Chen MC, Hsu KC (2015) Fish skin gelatin hydrolysates as dipeptidyl peptidase IV inhibitors and glucagon-like peptide-1 stimulators improve glycaemic control in diabetic rats: a comparison between warm- and cold-water fish. J Funct Foods 19:330–340

    Article  CAS  Google Scholar 

  43. Rahfeld J, Schierborn M, Hartrodt B, Neubert K, Heins J (1991) Are diprotin A (Ile-Pro-Ile) and diprotin B (Val-Pro-Leu) inhibitors or substrates of dipeptidyl peptidase IV? Biochim Biophys Acta 1076:314–316

    Article  CAS  Google Scholar 

  44. Hatanaka T, Kawakami K, Uraji M (2014) Inhibitory effect of collagen-derived tripeptides on dipeptidylpeptidase-IV activity. J Enzyme Inhib Med Chem 29:823–828

    Article  CAS  Google Scholar 

  45. Kellenberger E, Rodrigo J, Muller P, Rognan D (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 57:225–242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the “National Natural Science Foundation of China (No. 31301413)”, “Open Funding Project of the State Key Laboratory of Bioreactor Engineering”, and “National Basic Research Program of China (No. 2012CB721103)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingli Xie.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Chen, X., Wu, J. et al. Dipeptidyl peptidase IV inhibitory peptides from Chlorella vulgaris: in silico gastrointestinal hydrolysis and molecular mechanism. Eur Food Res Technol 243, 1739–1748 (2017). https://doi.org/10.1007/s00217-017-2879-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-017-2879-1

Keywords

Navigation