Skip to main content
Log in

Carotenoids production from a newly isolated Sporidiobolus pararoseus strain by submerged fermentation

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This work aimed at evaluating the total carotenoids production by a newly isolated Sporidiobolus pararoseus. Bioproduction was carried out in an orbital shaker, using 10% (w/v) of inoculum (25 °C, 180 rpm for 35 h), incubated for 120 h in a dark room. Liquid N2 and dimethylsulphoxide (DMSO) were used for cell rupture, and carotenoids were extracted with a solution of acetone/methanol (7:3, v/v). Optimization of carotenoids bioproduction was achieved by experimental design technique. Initially, a Plackett–Burman design was used for the screening of the most important factors, after the statistical analysis, a complete second-order design was carried out to optimize the concentration of total carotenoids in a conventional medium. Maximum concentration of 856 μg/L of total carotenoids was obtained in a medium containing 60 g/L of glucose, 15 g/L of peptone, and 15 g/L of malt extract, 25 °C, initial pH 4.0 and 180 rpm. Fermentation kinetics showed that the maximum concentration of total carotenoids was reached after 102 h of fermentation and that carotenoids bioproduction was associated with cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Botella-Pavía P, Rodríguez-Concepción M (2006) Carotenoid biotechnology in plants for nutritionally improved foods. Physiol Plants 126:369–381

    Article  Google Scholar 

  2. El-Agamey A, Lowe GM, Mcgarvey DJ, Mortensen A, Phillip DM, Truscott G, Young AJ (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430:37–48

    Article  CAS  Google Scholar 

  3. Aksu Z, Eren AT (2005) Carotenoids production by the yeast Rhodotorula mucilaginosa: use of agricultural wastes as a carbon source. Process Biochem 40:2985–2991

    Article  CAS  Google Scholar 

  4. Gu Z, Deming C, Yongbin H, Zhigang C, Feirong G (2008) Optimization of carotenoids extraction from Rhodobacter sphaeroides. Food Sci Technol 14:1082–1088

    Google Scholar 

  5. Aguilar CP, González M, Cifuentes AS, Silva M (2004) Growth and accumulation of total carotenoids in two strains of Dunaliella salina Teod. (Chlorophyceae) from the northern and central coast of Perú. J Chilean Chem Soc 49:69–74

    CAS  Google Scholar 

  6. Fazeli MR, Tofighi H, Samadi N, Jamalifar H (2006) Effects of salinity on b-carotene production by Dunaliella tertiolecta DCCBC 26 isolated from Urmia salt lake, North of Iran. Bioresour Technol 97:2453–2456

    Article  CAS  Google Scholar 

  7. Po-Fung I, Feng C (2005) Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem 40:733–738

    Article  Google Scholar 

  8. García-González M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115:81–90

    Article  Google Scholar 

  9. Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality. Trends Food Sci Technol 16:389–406

    Article  Google Scholar 

  10. Johnson EA, Schroeder WA (1995) Microbial carotenoids. Adv Biochem Eng/Biotechnol 11:297–326

    Google Scholar 

  11. Goodwin TW (1980) The biochemistry of the carotenoids. Chapman & Hall, London

    Google Scholar 

  12. Hu ZC, Zheng YG, Wang Z, Shen YC (2006) pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomyces dendrorhous. Enzyme Microb Technol 39:586–590

    Article  CAS  Google Scholar 

  13. Park PK, Kim EY, Chu KH (2007) Chemical disruption of yeast cells for the isolation of carotenoid pigments. Sep Pur Technol 53:148–152

    Article  CAS  Google Scholar 

  14. Aksu Z, Eren AT (2007) Production of carotenoids by isolated yeast of Rhodotorula glutinis. Biochem Eng J 35:107–113

    Article  CAS  Google Scholar 

  15. Tinoi J, Rakariyatham N, Deming RL (2005) Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Process Biochem 40:2551–2557

    Article  CAS  Google Scholar 

  16. Davoli P, Mierau V, Weber RWS (2004) Carotenoids and fatty acids in red yeasts Sporobolomyces roseus and Rhodotorula glutinis. Appl Biochem Microbiol 40(4):392–397

  17. Razavi SH, March I (2006) Effect of temperature and pH on the growth kinetics and carotenoid production by Sporobolomyces ruberrimus H110 using technical glycerol as carbon source. Iranian J Chem Eng 23(3):59–64

    Google Scholar 

  18. Maldonade IR, Rodriguez-Amaya DB, Scamparini ARP (2008) Carotenoids of yeasts isolated from the Brazilian ecosystem. Food Chem 107:145–150

    Article  CAS  Google Scholar 

  19. Valduga E, Valerio A, Treichel H, Di Luccio M, Furigo AJ (2008) Study of the bio-production of carotenoids by Sporidiobolus salmonicolor (CBS 2636) using pre-treated agro-industrial substrates. J Chem Technol Biotechnol 83:1267–1274

    Article  CAS  Google Scholar 

  20. Valduga E, Valerio A, Treichel H, Furigo AJ, Di Luccio M (2009) Optimization of the bio-production of total carotenoids by Sporidiobolus salmonicolor (CBS 2636) using response surface technique. Food Bioproc Technol 2:415–421

    Article  CAS  Google Scholar 

  21. Valduga E, Tatsch PO, Tiggemann L et al (2009) Evaluation of the conditions of carotenoids production in a synthetic medium by Sporidiobolus salmonicolor (CBS 2636) in a bioreactor. Int J Food Sci Technol 44:2445–2451

    Article  CAS  Google Scholar 

  22. Valduga E, Tatsch PO, Tiggemann L, Treichel H, Toniazzo G, Zeni J, Di Luccio M, Furigo AJ (2009) Produção de carotenoides: microrganismos como fonte de pigmentos naturais. Quim Nova 32:2429–2436

    Article  CAS  Google Scholar 

  23. Valduga E, Valerio A, Tatsch PO, Treichel H, Furigo AJ, Di Luccio M (2009) Assessment of cell disruption and carotenoids extraction from Sporidiobolus salmonicolor (CBS 2636). Food Bioproc Technol 2:234–238

    Article  CAS  Google Scholar 

  24. Lim GB, Lee SY, Lee EK, Haam SJ, Kim WS (2002) Separation of astaxanthin from red yeast Phaffia rhodozyma by supercritical carbon dioxide extraction. Biochem Eng J 11:181–187

    Article  CAS  Google Scholar 

  25. Liu YS, Wu JY, Ho KP (2006) Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Biochem Eng J 27:331–335

    Article  Google Scholar 

  26. Valduga E, Schwartz CRM, Tatsch PO, Tiggemann L, Di Luccio M, Treichel H (2010) Evaluation of aeration and substrate concentration on the production of carotenoids by Sporidiobolus salmonicolor (CBS 2636) in bioreactor. Eur Food Res Technol 232:453–462

    Article  Google Scholar 

  27. Zeni J, Colet R, Tiggemann L, Toniazzo G, Cansian RL, Di Luccio M, Oliveira D, Valduga E (2011) Screening of microorganisms for production of carotenoids. Cyta J Food, accepted for publication

    Google Scholar 

  28. Stirling D (2003) DNA extraction from fungi, yeast and bacteria. In: Bartlett JMS, Stirling D (eds) PCR protocols, 2nd edn. Humana Press, New York, p 226

  29. Kurtzman CP (2006) Yeast species recognition from gene sequence analyses and other molecular methods. Mycoscience 47:65–71

    Article  CAS  Google Scholar 

  30. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large sub- unit 26S ribosomal DNA partial sequences. LWT 3:331–371

    Google Scholar 

  31. Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evolution Microbiol 3:1351–1371

    Article  Google Scholar 

  32. Ewing B, Hillier L, Wendl MC (1998) Base-calling of automated sequencer traces using Phred.? I. accuracy? Assessment. Genome Res 8:175–185

    CAS  Google Scholar 

  33. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    CAS  Google Scholar 

  34. Bai FY, Zhao JH, Takashima M, Jia JH, Boekhout T, Nakase T (2002) Reclassification of the Sporobolomyces roseus and Sporidiobolus pararoseus complexes, wit the description of Sporobolomyces phaffii sp. nov. Int J Syst Evol Microbiol 52:2309–2314

    Article  CAS  Google Scholar 

  35. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  36. Saitou N, Nei M (1987) The neighbor-joining method: a newmethod for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  37. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  38. Davies BH (1976) Chemistry and biochemistry of plant pigments. In: Goodwin TW (eds) Carotenoid. Academic Press, New York. pp 38–165

  39. Silva C, Cabral JMS, Keulen FV (2004) Isolation of a β-total carotenoids over-producing soil bacterium, Sphingomonas sp. Biotechnol Let 26:257–262

    Article  CAS  Google Scholar 

  40. Miller GL (1956) Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  Google Scholar 

  41. Buzzini P, Martini A, Gaetani M, Turchetti B, Pagnoni UM, Davoli P (2005) Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface analysis. Enzyme Microb Technol 36:687–692

    Article  CAS  Google Scholar 

  42. Ramirez J, Gutierrrez H, Gschaedler A (2001) Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. J Biotechnol 88(3):259–268

    Article  CAS  Google Scholar 

  43. Wang SL, Sun JS, Han BZ, Wu XZ (2007) Optimization of β-carotene production by Rhodotorula glutinis using high hydrostatic pressure and response surface methodology. J Food Sci 72:325–329

    Article  Google Scholar 

  44. Buzzini P, Innocenti M, Turchetti B, Libkind D, van Broock M, Mulinacci N (2007) Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Canadian J Microbiol 53:1024–1031

    Article  CAS  Google Scholar 

  45. Choudari SM, Singhal R (2008) Media optimization for the production of β–carotene by Blakeslea trispora: a statistical approach. Biores Technol 99:722–730

    Article  Google Scholar 

  46. Fang TJ, Wang JM (2002) Extractability of astaxanthin in a mixed culture of a carotenoid over-producing mutant of Xanthophyllomyces dendrourhous and Bacillus circulans in two-stage batch fermentation. Process Biochem 37:1235–1245

    Article  CAS  Google Scholar 

  47. Liu YS, Wu JY (2007) Optimization of cell growth and carotenoid production of Xanthophyllomyces dendrorhous through statistical experiment design. Biochem Eng J 36:182–189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Treichel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabral, M.M.S., Cence, K., Zeni, J. et al. Carotenoids production from a newly isolated Sporidiobolus pararoseus strain by submerged fermentation. Eur Food Res Technol 233, 159–166 (2011). https://doi.org/10.1007/s00217-011-1510-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1510-0

Keywords

Navigation