Skip to main content
Log in

Chemical factors contributing to orosensory profiles of bilberry (Vaccinium myrtillus) fractions

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The effects of fractionation on the sensory profile of bilberry (Vaccinium myrtillus) were studied. The berries were fractionated by juice pressing, four ethanol extractions and ethanol evaporation. High-performance liquid chromatography and gas chromatography were used to analyze phenolic compounds, sugars and organic fruit acids of the fractions, and sensory properties of the fractions were studied using generic descriptive analysis. The majority of the phenolic compounds were anthocyanins, and they were mainly found to be located in the press residue. Anthocyanins and other phenolic compounds dissolved in ethanol, and the extracts were perceived as astringent and bitter as the sensory profile of the press residue was very mild. The juice was dominant in sweetness because it contained most of the sugars and fruit acids. Many flavonol glycosides and hydroxycinnamic acid conjugates were discovered to be the compounds contributing to astringency and bitterness, especially myricetin-3-O-arabinoside, myricetin-3-O-glucoside, myricetin-3-O-galactoside and an unknown caffeoyl quinic acid derivative. By supplementing the juice fraction with extracts, the content of phenolic compounds was significantly increased without altering the sensory profile of the juice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Heinonen M (2007) Antioxidant activity and antimicrobial effect of berry phenolics—a Finnish perspective. Mol Nutr Food Res 51:684–691

    Article  CAS  Google Scholar 

  2. Kähkönen MP, Hopia AI, Heinonen M (2001) Berry phenolics and their antioxidant activity. J Agric Food Chem 49:4076–4082

    Article  CAS  Google Scholar 

  3. Kähkönen MP, Heinämäki J, Olliainen V, Heinonen M (2003) Berry anthocyanins: isolation, identification and antioxidant activities. J Sci Food Agric 83:1403–1411

    Article  CAS  Google Scholar 

  4. Wu X, Gu L, Prior RL, McKay S (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia and Sambucus and their antioxidant capacity. J Agric Food Chem 52:7846–7856

    Article  CAS  Google Scholar 

  5. Ogawa K, Sakakibara H, Iwata R, Ishii T, Sato T, Goda T, Shimoi K, Kumazawa S (2008) Anthocyanin composition and antioxidant activity of the crowberry (Empetrum nigrum) and other berries. J Agric Food Chem 56:4457–4462

    Article  CAS  Google Scholar 

  6. Boots AW, Haenen GRMM, Bast A (2008) Health effects of quercetin: From antioxidant to nutraceutical. Eur J Pharm 585:325–337

    Article  CAS  Google Scholar 

  7. Erlund I, Koli R, Alfthan G, Marniemi J, Puukka P, Mustonen P, Mattila P, Jula A (2008) Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am J Clin Nutr 87:323–331

    CAS  Google Scholar 

  8. Galvano F, La Fauci L, Lazzarino G, Fogliano V, Ritieni A, Ciappelano S, Battistini NC, Tavazzi B, Galvano G (2004) Cyanidins: metabolism and biological properties. J Nutr Biochem 15:2–11

    Article  CAS  Google Scholar 

  9. Bajec MR, Pickering GJ (2008) Astringency: mechanisms and perception. Crit Rev Food Sci Nutr 48:858–875

    Article  CAS  Google Scholar 

  10. Drewnovski A, Gomes-Carneros C (2000) Bitter taste, phytonutrients, and the consumer: a review. Am J Clin Nutr 72:1424–1435

    Google Scholar 

  11. Lesschaeve I, Noble A (2005) Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences. Am J Clin Nutr 81(suppl):330S–335S

    CAS  Google Scholar 

  12. Häkkinen S, Heinonen M, Kärenlampi S, Mykkänen H, Ruuskanen J, Törrönen R (1999) Screening of selected flavonoids and phenolic acids in 19 berries. Food Res Int 32:345–353

    Article  Google Scholar 

  13. Määttä-Riihinen KR, Kamal-Eldin A, Mattila PH, Gonzáles-Paramás AM, Törrönen AR (2004) Distribution and contents of phenolic compounds in eighteen Scandinavian berry species. J Agric Food Chem 52:4477–4485

    Article  CAS  Google Scholar 

  14. Kallio H, Nieminen R, Tuomasjukka S, Hakala M (2006) Cutin composition of five Finnish berries. J Agric Food Chem 54:457–462

    Article  CAS  Google Scholar 

  15. Buchert J, Koponen J, Suutarinen M, Mustranta A, Lille M, Törrönen R, Poutanen K (2005) Effect of enzyme-aided pressing on anthocyanin yield and profiles in bilberry and blackcurrant juices. J Sci Food Agric 85:2548–2556

    Article  CAS  Google Scholar 

  16. Lätti AK, Riihinen KR, Kainulainen PS (2008) Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J Agric Food Chem 56:190–196

    Article  CAS  Google Scholar 

  17. Koponen JM, Happonen AM, Auriola S, Kontkanen H, Buchert J, Poutanen KS, Törrönen AR (2008) Characterization and fate of black currant and bilberry flavonols in enzyme-aided processing. J Agric Food Chem 56:3136–3144

    Article  CAS  Google Scholar 

  18. Hokkanen J, Mattila S, Jaakola L, Pirttilä AM, Tolonen A (2009) Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves. J Agric Food Chem 57:9437–9447

    Article  CAS  Google Scholar 

  19. Sandell M, Laaksonen O, Järvinen R, Rostiala N, Pohjanheimo T, Tiitinen K, Kallio H (2009) Orosensory profiles and chemical composition of black currant (Ribes nigrum) juice and fractions of press residue. J Agric Food Chem 57:3718–3728

    Article  CAS  Google Scholar 

  20. Schwarz B, Hofmann T (2007) Sensory-guided decomposition of red currant juice (Ribes rubrum) and structure determination of key astringent compounds. J Agric Food Chem 55:1394–1404

    Article  CAS  Google Scholar 

  21. Määttä K, Kamal-Eldin A, Törrönen R (2001) Phenolic compounds in berries of black, red, green and white currants (Ribes sp.). Antioxid Redox Signal 3:981–993

    Article  Google Scholar 

  22. Zheng J, Kallio H, Yang B (2009) Effects of latitude and weather conditions on sugars, fruit acids and ascorbic acid in currant (Ribes sp.) cultivars. J Sci Food Agric 89:2011–2023

    Article  CAS  Google Scholar 

  23. Rieger G, Müller M, Guttenberger H, Bucar F (2008) Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sambucus nigra, and Vaccinium myrtillus. J Agric Food Chem 56:9080–9086

    Article  CAS  Google Scholar 

  24. Häkkinen SH, Kärenlampi SO, Mykkänen HM, Törrönen AR (2000) Influence of domestic processing and storage on flavonol contents in berries. J Agric Food Chem 48:2960–2965

    Article  CAS  Google Scholar 

  25. Amarowicz R, Carle R, Dongowski G, Durazzo A, Galensa R, Kammerer D, Maiani G, Piskula M (2009) Influence of post harvest processing and storage on the content of phenolic acids and flavonoids in foods. Mol Nutr Food Res 53:S151–S183

    Google Scholar 

  26. Riihinen K, Jaakola L, Kärenlampi S, Hohtola A (2008) Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and ‘northblue’ blueberry (Vaccinium corymbosum x V. angustifolium). Food Chem 110:156–160

    Article  CAS  Google Scholar 

  27. Tiitinen K, Hakala M, Kallio H (2005) Quality components of sea buckthorn (Hippophae rhamnoides) varieties. J Agric Food Chem 53:1692–1699

    Article  CAS  Google Scholar 

  28. Viljakainen S, Visti A, Laakso S (2002) Concentrations of organic acids and soluble sugars in juices from Nordic berries. Acta Agric Scand Sect B Soil Plant Sci 52:101–109

    CAS  Google Scholar 

  29. Schwarz B, Hofmann T (2007) Isolation, structure determination, and sensory activity of mouth-drying and astringent nitrogen-containing phytochemicals isolated from red currants (Ribes rubrum). J Agric Food Chem 55:1405–1410

    Article  CAS  Google Scholar 

  30. Scharbert S, Holzmann N, Hofmann T (2004) Identification of astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J Agric Food Chem 52:2498–2508

    Article  CAS  Google Scholar 

  31. Hufnagel JC, Hofmann T (2008) Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine. J Agric Food Chem 56:1376–1386

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.Sc. Riikka Järvinen is thanked for assistance in the identifications of phenolic compounds. This study was funded by the Finnish Funding Agency for Technology and Innovation, by food companies in the project “Novel (bio)processing techniques for flavour design in plant-based foods”, the Academy of Finland (Sandell 116165) and the Finnish Cultural Foundation, Varsinais-Suomi Regional Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oskar Laaksonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laaksonen, O., Sandell, M. & Kallio, H. Chemical factors contributing to orosensory profiles of bilberry (Vaccinium myrtillus) fractions. Eur Food Res Technol 231, 271–285 (2010). https://doi.org/10.1007/s00217-010-1278-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-010-1278-7

Keywords

Navigation