Skip to main content
Log in

Quantitative, multiplex ligation-dependent probe amplification for the determination of eight genetically modified maize events

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Specific legislation in the EU requires that foods containing more than 0.9% of genetically modified organisms (GMOs) should be labelled. To this end, we have developed a robust, quantitative, sensitive, nine-plex ligation-dependent probe amplification method, GMO-MLPA, for event-specific detection of maize TC1507, MON810, NK603, MON863, BT176, T25, GA21, construct-specific detection of BT11, and detection of the endogenous hmga maize reference gene. Ligated probes are amplified by PCR. Amplicons are detected using capillary electrophoresis. Specific GMO signals are normalised relative to the signal from the endogenous hmga gene and quantified by comparing with known standard curves. The method is suitable for quantification in the 0–2% range. Agreement was obtained in 149 of 160 determinations when 11 known mixtures of GMO and 9 food and feed samples were analysed using the GMO-MLPA method and compared to results from quantitative real-time 5′-nuclease PCR. The presented method is, therefore, suitable for quantification purposes for food and feed containing the most common maize GMOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. James C (2009) ISAAA brief no. 39

  2. Marmiroli N, Maestri E, Gulli M, Malcevschi A, Peano C, Bordoni R, De Bellis G (2008) Anal Bioanal Chem 392:369–384

    Article  CAS  Google Scholar 

  3. Grothaus GD, Bandla M, Currier T, Giroux R, Jenkins GR, Lipp M, Shan GM, Stave JW, Pantella V (2006) J AOAC Int 89:913–928

    CAS  Google Scholar 

  4. Asensio L, Gonzalez I, Garcia T, Martin R (2008) Food Control 19:1–8

    Article  CAS  Google Scholar 

  5. Elenis DS, Kalogianni DP, Glynou K, Ioannou PC, Christopoulos TK (2008) Anal Bioanal Chem 392:347–354

    Article  CAS  Google Scholar 

  6. Morisset D, Stebih D, Cankar K, Zel J, Gruden K (2008) Eur Food Res Technol 227:1287–1297

    Article  CAS  Google Scholar 

  7. Holst-Jensen A (2007) Food toxicant analysis. Techniques, strategies and developments. Elsevier, The Netherlands, pp 231–268

    Google Scholar 

  8. Heide BR, Heir E, Holck A (2008) Eur Food Res Technol 227:527–535

    Article  CAS  Google Scholar 

  9. Rudi K, Rud I, Holck A (2003) Nucl Acids Res 31:e62

    Article  Google Scholar 

  10. Heide BR, Dromtorp SM, Rudi K, Heir E, Holck A (2008) Eur Food Res Technol 227:1125–1137

    Article  CAS  Google Scholar 

  11. Cao WG (2004) Trends Biotechnol 22:38–44

    Article  CAS  Google Scholar 

  12. Mano J, Oguchi T, Akiyama H, Teshima R, Hino A, Furui S, Kitta K (2009) J Agric Food Chem 57:2640–2646

    Article  CAS  Google Scholar 

  13. Peano C, Bordoni R, Gulli M, Mezzelani A, Samson MC, De Bellis G, Marmiroli N (2005) Anal Biochem 346:90–100

    Article  CAS  Google Scholar 

  14. Moreano F, Ehlert A, Busch U, Engel KH (2006) Eur Food Res Technol 222:479–485

    Article  CAS  Google Scholar 

  15. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G (2002) Nucl Acids Res 30:e57

    Article  Google Scholar 

  16. Ehlert A, Moreano F, Busch U, Engel KH (2008) Eur Food Res Technol 227:805–812

    Article  CAS  Google Scholar 

  17. Delseny M, Glaszmann JC (1995) Biofutur 146:52–56

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the European Commission through the Sixth Framework Program, integrated project Co-Extra (http://www.coextra.eu; contract FOOD-2005-CT-007158) and Norwegian Research Council project 154254/130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Askild Lorentz Holck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holck, A.L., Drømtorp, S.M. & Heir, E. Quantitative, multiplex ligation-dependent probe amplification for the determination of eight genetically modified maize events. Eur Food Res Technol 230, 185–194 (2009). https://doi.org/10.1007/s00217-009-1155-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-009-1155-4

Keywords

Navigation