Skip to main content
Log in

Development of a modular system for detection of genetically modified organisms in food based on ligation-dependent probe amplification

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The application of a method based on ligation-dependent probe amplification to the simultaneous detection of different genetically modified organisms in food is described. The ligation reaction of target-specific probes with characteristic lengths and universal primer binding sites is followed by PCR amplification using fluorescein-labeled primers. The separation and the detection of DNA fragments are achieved by capillary electrophoresis via laser-induced fluorescence. The approach allows the simultaneous detection of several targets corresponding to different levels of specificity in a one-tube assay. Synthetic oligonucleotides were designed to detect (1) reference genes in the genome from maize, soya and rapeseed, (2) the CaMV 35S-promotor as screening element, (3) the construct-specific 35S-pat junction, and (4) the event-specific regions of the transgenic maize line MON 810 and of Roundup Ready soya. Specificity and sensitivity (GMO content 0.1%) of the approach were shown for all targets. This novel analytical strategy represents a flexible, modular system for the surveillance of GMO-derived products that can be readily complemented by further target sequences of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on genetically modified food and feed. Off J Eur Union, 2003: p. L 268/1

  2. Regulation (EC) No 1830/2003 of the European Parliament and of the Council of 22 September 2003 concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18/EC. Off J Eur Union, 2003: p. L 268/24

  3. Hernandez M, Rodriguez-Lazaro D, Zhang D, Esteve T, Pla M, Prat S (2005) Interlaboratory transfer of a PCR multiplex method for simultaneous detection of four genetically modified maize lines: Bt11, MON810, T25, and GA21. J Agric Food Chem 53(9):3333–3337

    Article  CAS  Google Scholar 

  4. Huang HY, Pan TM (2004) Detection of genetically modified maize MON810 and NK603 by multiplex and real-time polymerase chain reaction methods. J Agric Food Chem 52(11):3264–3268

    Article  CAS  Google Scholar 

  5. Forte VT, Di Pinto A, Martino C, Tantillo GM, Grasso G, Schena FP (2005) A general multiplex-PCR assay for the general detection of genetically modified soya and maize. Food Control 16(6):535–539

    Article  CAS  Google Scholar 

  6. Germini A, Zanetti A, Salati C, Rossi S, Forré C, Schmid S, Marchelli R (2004) Development of a seven-target multiplex PCR for the simultaneous detection of transgenic soybean and maize in feeds and foods. J Agric Food Chem 52(11):3275–3280

    Article  CAS  Google Scholar 

  7. James D, Schmidt A-M, Wall E, Green M, Masri S (2003) Reliable detection and identification of genetically modified maize, soybean, and canola by multiplex PCR analysis. J Agric Food Chem 51(20):5829–5834

    Article  CAS  Google Scholar 

  8. Matsuoka T, Kuribara H, Akiyama H, Miura H, Goda Y, Kusakabe Y, Isshiki K, Toyoda M, Hino A (2001) A multiplex PCR method of detecting recombinant DNAs from five lines of genetically modified maize. Shokuhin Eiseigaku Zasshi 42(1):24–32

    Article  CAS  Google Scholar 

  9. Matsuoka T, Kuribara H, Takubo K, Akiyama H, Miura H, Goda Y, Kusakabe Y, Isshiki K, Toyoda M, Hino A (2002) Detection of recombinant DNA segments introduced to genetically modified maize (Zea mays). J Agric Food Chem 50(7):2100–2109

    Article  CAS  Google Scholar 

  10. Permingeat HR, Reggiardo MI, Vallejos RH (2002) Detection and quantification of transgenes in grains by multiplex and real-time PCR. J Agric Food Chem 50(16):4431–4436

    Article  CAS  Google Scholar 

  11. Onishi M, Matsuoka T, Kodama T, Kashiwaba K, Futo S, Akiyama H, Maitani T, Furui S, Oguchi T, Hino A (2005) Development of a multiplex polymerase chain reaction method for simultaneous detection of eight events of genetically modified maize. J Agric Food Chem 53(25):9713–9721

    Article  CAS  Google Scholar 

  12. Xu X, Li Y, Zhao H, Wen SY, Wang SQ, Huang J, Huang KL, Luo YB (2005) Rapid and reliable detection and identification of GM events using multiplex PCR coupled with oligonucleotide microarray. J Agric Food Chem 53(10):3789–3794

    Article  CAS  Google Scholar 

  13. Germini A, Mezzelani A, Lesignoli F, Corradini R, Marchelli R, Bordoni R, Consolandi C, De Bellis G (2004) Detection of genetically modified soybean using peptide nucleic acids (PNAs) and microarray technology. J Agric Food Chem 52(14):4535–4540

    Article  CAS  Google Scholar 

  14. Germini A, Rossi S, Zanetti A, Corradini R, Fogher C, Marchelli R (2005) Development of a peptide nucleic acid array platform for the detection of genetically modified organisms in food. J Agric Food Chem 53(10):3958–3962

    Article  CAS  Google Scholar 

  15. Bordoni R, Germini A, Mezzelani A, Marchelli R, De Bellis G (2005) A microarray platform for parallel detection of five transgenic events in foods: a combined polymerase chain reaction-ligation detection reaction-universal array method. J Agric Food Chem 53(4):912–918

    Article  CAS  Google Scholar 

  16. Bordoni R, Mezzelani A, Consolandi C, Frosini A, Rizzi E, Castiglioni B, Salati C, Marmiroli N, Marchelli R, Bernardi LR, Battaglia C, De Bellis G (2004) Detection and quantitation of genetically modified maize (Bt-176 transgenic maize) by applying ligation detection reaction and universal array technology. J Agric Food Chem 52(5):1049–1054

    Article  CAS  Google Scholar 

  17. Gerry NP, Witowski NE, Day J, Hammer RP, Barany G, Barany F (1999) Universal DNA microarray method for multiplex detection of low abundance point mutations. J Mol Biol 292(2):251–262

    Article  CAS  Google Scholar 

  18. Peano C, Bordani R, Gulli M, Mezzelani A, Samson MC, De Bellis G, Marmiroli N (2005) Multiplex polymerase chain reaction and ligation detection reaction/universal array technology for the traceability of genetically modified organisms in foods. Anal Biochem 346(1):90–100

    Article  CAS  Google Scholar 

  19. Rudi K, Rud I, Holck A (2003) A novel multiplex quantitative DNA array based PCR (MQDA-PCR) for quantification of transgenic maize in food and feed. Nucleic Acids Res 31(11):e62

    Article  Google Scholar 

  20. Belgrader P, Barany F, Lubin M (1997) Detection of nucleic acid sequence differences using coupled ligase detection and polymerase chain reactions, in PCT Int. Appl. Cornell Research Foundation, Inc., USA; Belgrader, Phillip. Wo. p 158 pp

  21. Carrino JJ (1996) Multiplex ligations-dependent amplification using split probe reagents containing common primer binding sites, in PCT Int. Appl. Abbott Laboratories, USA. Wo. p. 40 pp

  22. Hsuih TC, Park YN, Zaretzsky C, Wu F, Tyagi S, Kramer FR, Sperling R, Zhang DY (1996) Novel, ligation-dependent PCR assay for detection of hepatitis C in serum. J Clin Microbiol 34(3)501-517

    Google Scholar 

  23. Eldering E, Spek CA, Aberson HL, Grummels A, Derks IA, de Vos AF, McElgunn CJ, Schouten JP (2003) Expression profiling via novel multiplex assay allows rapid assessment of gene regulation in defined signalling pathways. Nucleic Acids Res 31(23):e153

    Article  Google Scholar 

  24. Gille JJP, Hogervorst FBL, Pals G, Wijnen J Th van Schooten RJ, Dommering CJ, Meijer GA, Craanen ME, Nederlof PM, de Jong D, McElgunn CJ, Schouten JP, Menko FH (2002) Genomic deletions of MSH2 and MLH1 in colorectal cancer families detected by a novel mutation detection approach. Br J Cancer 87(8):892–897

    Article  CAS  Google Scholar 

  25. Hogervorst FBL, Nederlof PM, Gille JJP, McElgunn CJ, Grippeling M, Pruntel R, Regnerus R, Van Welsem T, Van Spaendonk R, Menko FH, Kluijt I, Dommering C, Verhoef S, Schouten JP, Van’t Veer LJ, Pals G (2003) Large genomic deletions and duplications in the BRCA1 gene identified by a novel quantitative method. Cancer Res 63(7):1449–1453

    CAS  Google Scholar 

  26. Schouten JP, McElgumn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30(12):e57/1–e57/13

    Article  Google Scholar 

  27. Taylor CF, Charlton RS, Burn J, Sheridan E, Taylor GR (2003) Genomic deletions in MSH2 or MLH1 are a frequent cause of hereditary non-polyposis colorectal cancer: identification of novel and recurrent deletions by MLPA. Hum Mutat 22(6):428–433

    Article  CAS  Google Scholar 

  28. Moreano F, Ehlert A, Busch U, Engel K-H (2006) Ligation-dependent probe amplification for the simultaneous event-specific detection and relative quantification of DNA from two genetically modified organisms. Eur Food Res Technol 222(5–6):479–485

    Article  CAS  Google Scholar 

  29. Moreano F, Pecoraro S, Bunge M, Busch U (2005) Development of synthetic DNA-standards for the quantitative screening of different genetically modified rapeseed lines via real-time PCR. In: Proceedings of the Euro Food Chem XIII conference, macromolecules and their degradation products in food—physiological, analytical and technological aspects, vol 1. Hamburg, Germany, pp 154–158

  30. Spoth B, Strauss E (1999) Screening for genetically modified organisms in food using Promega’s Wizard® resin. Promega Notes 73:23–25

    Google Scholar 

  31. Bauer T, Weller P, Hammes WP, Hertel C (2003) The effect of processing parameters on DNA degradation in food. Eur Food Res Technol 217(4):338–343

    Article  CAS  Google Scholar 

  32. Hupfer C, Hotzel H, Sachse K, Engel K-H (1998) Detection of the genetic modification in heat-treated products of Bt maize by polymerase chain reaction. Zeitschrift fuer Lebensmittel-Untersuchung und -Forschung A Food Res Technol 206(3):203–207

    Article  CAS  Google Scholar 

  33. Straub JA, Hertel C, Hammes WP (1999) Limits of a PCR-based detection method for genetically modified soya beans in wheat bread production. Zeitschrift fuer Lebensmittel-Untersuchung und -Forschung A Food Res Technol 208:77–82

    Article  CAS  Google Scholar 

  34. Holck A, Vaitilingom M, Didierjean L, Rudi K (2002) 5′-Nuclease PCR for quantitative event-specific detection of the genetically modified Mon810 MaisGard maize. Eur Food Res Technol 214(5):449–453

    Article  CAS  Google Scholar 

  35. Windels P, Taverniers I, Depicker A, Van Bockstaele E, De Loose M (2001) Characterisation of the Roundup Ready soybean insert. Eur Food Res Technol 213(2):107–112

    Article  CAS  Google Scholar 

  36. Magnuson VL, Ally DS, Nylund SJ, Karanjawala ZE, Rayman JB, Knapp JI, Lowe AL, Ghosh S, Collins FS (1996) Substrate nucleotide-determined non-templated addition of adenine by Taq DNA polymerase: implications for PCR-based genotyping and cloning. Biotechniques 21(4):700–709

    CAS  Google Scholar 

  37. Wenz H, Robertson JM, Menchen S, Oaks F, Demorest DM, Scheibler D, Rosenblum BB, Wike C, Gilbert DA, Efcavitch JW (1998) High-precision genotyping by denaturing capillary electrophoresis. Genome Res 8(1):69–80

    CAS  Google Scholar 

  38. Clark JM (1988) Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res 16(20):9677–86

    Article  CAS  Google Scholar 

  39. Shinde D, Lai Y, Sun F, Arnheim N (2003) Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites. Nucleic Acids Res 31(3):974–980

    Article  CAS  Google Scholar 

  40. Fearon KL, Stults JT, Bergot BJ, Christensen LM, Raible AM (1995) Investigation of the ‘n-1’ impurity in phosphorothioate oligodeoxynucleotides synthesized by the solid-phase beta-cyanoethyl phosphoramidite method using stepwise sulfurization. Nucleic Acids Res 23(14):2754–2761

    Article  CAS  Google Scholar 

  41. Temsamani J, Kubert M, Agrawal S (1995) Sequence identity of the n-1 product of a synthetic oligonucleotide. Nucleic Acids Res 23(11):1841–1844

    Article  CAS  Google Scholar 

  42. European Network of GMO Laboratories (2005) Definition of minimum performance requirements for analytical methods of GMO testing. http://gmo-crl.jrc.it/guidancedocs.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Engel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehlert, A., Moreano, F., Busch, U. et al. Development of a modular system for detection of genetically modified organisms in food based on ligation-dependent probe amplification. Eur Food Res Technol 227, 805–812 (2008). https://doi.org/10.1007/s00217-007-0790-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0790-x

Keywords

Navigation