Skip to main content
Log in

Gamma-irradiation as a method of microbiological control, and its impact on the oxidative labile lipid component of Cannabis sativa and Helianthus annus

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The effect of irradiation (0–20 kGy) on hemp and sunflower seeds was assessed, with specific reference to the oxidatively labile lipid component (unsaturated fatty acids and tocochromanols). Total protein, lipid, and solids content of the seeds did not vary with irradiation dose. Lipid hydroperoxide concentration increased significantly in the sunflower seeds (48 mmol kg−1 lipid) and a significant increase in volatile secondary oxidation products was measured in both seeds (e.g. hexanal, heptanal, 1-penten-3-ol) with increasing irradiation dose. Irradiation at 5 kGy sterilised the seeds of all microbial contamination and irradiation doses of 20 kGy prevented germination. A loss of the antioxidant tocopherol was shown with increasing irradiation doses, although this was selective for specific tocopherol isoforms (α-tocopherol, β-tocopherol and γ-tocopherol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Buzby JC, Roberts T, Jordan-Lin CT, MacDonald M, Bacterial Foodborne Disease (1996) Medical costs and productivity losses. Agricultural economics report no AER741

  2. Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL (1996) Radiat Res 146:247–258

    Article  CAS  Google Scholar 

  3. Perez MB, Aveldano MI, Croci CA (2007) Postharvest Biol Technol 44:122–130

    Article  CAS  Google Scholar 

  4. Perez MB, Curzio OA, Aveldano MI, Croci CA (1998) Radiat Phys Chem 52:113–117

    Article  CAS  Google Scholar 

  5. Valentova O, Novotna Z, Svoboda Z, Schwarz W, Kas J (2000) J Food Lipids 7:237–245

    Google Scholar 

  6. Hajduch M, Debre F, Bohmova B, Pretova A (2000) Biologia 55:115–120

    CAS  Google Scholar 

  7. Croci CA, Arguello JA, Orioli GA (1994) Int J Radiat Biol 65:263–266

    Article  CAS  Google Scholar 

  8. Szczapa EL, Nogala-Kalucka KJM, Zawirska-Wojtasiak R (2003) Food Chem 83:279–285

    Article  CAS  Google Scholar 

  9. Ramarathnam N, Osawa T, Namiki M, Kawakishi S (1989) J Am Oil Chem Soc 66:105–108

    Article  Google Scholar 

  10. Stajner D, Milosevic M, Popovic BM (2007) Int J Mol Sci 8:618–627

    Article  CAS  Google Scholar 

  11. Nawar A (1986) Food Rev Int 21:45–78

    Article  Google Scholar 

  12. Fisk ID, White DA, Carvalho A, Gray DA (2006) J Am Oil Chem Soc 83:341–344

    Article  CAS  Google Scholar 

  13. White DA, Fisk ID, Gray DA (2006) J Cereal Sci 43:244–249

    Article  CAS  Google Scholar 

  14. Knapp FW, Tappel AL (1961) J Am Oil Chem Soc 38:151–156

    Article  CAS  Google Scholar 

  15. Kamal-Eldin A, Appelqvist L (1996) Lipids 31:671–701

    Article  CAS  Google Scholar 

  16. Zarbakhsh AJ, Prakash HS, Shetty HS (1999) Seed Sci Technol 27:771–778

    Google Scholar 

  17. International Seed Testing Association (1985) Seed Sci Technol 13:299–355

    Google Scholar 

  18. Smith PK (1985) Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  19. Bryngelsson S, Mannerstedt-Fogelfors B, Kamal-Eldin A, Andersson R, Dimberg LH (2002) J Sci Food Agric 82:606–614

    Article  CAS  Google Scholar 

  20. Beltran G, Aguilera MP, Gordon MH (2005) Food Chem 92:401–406

    Article  CAS  Google Scholar 

  21. Kumari R, Singh Y (1996) Neo Botanica 4:25–29

    Google Scholar 

  22. Taylor FG (1968) Radiat Bot 8:67–70

    Article  Google Scholar 

  23. Kymalainen H-R, Koivula M, Kuisma R, Sjoberg A-M, Pehkonen A (2004) Radiat Phys Chem 71:1065–1072

    Article  CAS  Google Scholar 

  24. Gnanamanickam SS (2006) Plant-associated bacteria. Springer, Netherlands

    Google Scholar 

  25. Palleroni NJ (1992) The prokaryotes. pp 3071–3085

  26. Haas D, Defago G (2005) Nat Rev Microbiol. pp 307–319

  27. Grinchenko T, Reme P, Cunha BA (2003) Am J Infect Control 31:385–386

    Article  Google Scholar 

  28. Cunha BA (1999) Pseudoinfections and pseudo-outbreaks. Lippincott/Williams and Williams, Philadelphia

    Google Scholar 

  29. Jay JM (1991) Modern food microbiology. 4th edn, Chapman and Hall, London

  30. Maity JP, Chakraborty A, Saha A, Santra SC, Chanda S (2004) Radiat Phys Chem 71:1065–1072

    Article  CAS  Google Scholar 

  31. Bruno Maresca JHS (2006) Anat Rec B New Anat 289B:38–46

    Article  CAS  Google Scholar 

  32. Jo C, Ahn DU (2000) J Food Sci 65:612–616

    Article  CAS  Google Scholar 

  33. Valentova O, Novotna Z, Svododa A, Schwarz W, Kas J (2000) J Food Lipids 7:237–245

    Google Scholar 

  34. Wickern B, Simat T, Steinhart H (1997) Z Lebensm Unters Forsch A 205:446–451

    Article  Google Scholar 

  35. Cho Y, Song JB (2000) J Biochem Mol Biol 33:133–137

    CAS  Google Scholar 

  36. Harrison K, Were LM (2007) Food Chem 102:932–937

    Article  CAS  Google Scholar 

  37. Frankel EN, Selke E, Neff WE, Miyashita K (1992) Lipids 27:442–446

    Article  CAS  Google Scholar 

  38. Frankel EN (1998) Lipid oxidation, vol 10. The Oily Press, Dundee

    Google Scholar 

  39. Frankel EN (1984) J Am Oil Chem Soc 61:1908–1917

    Article  CAS  Google Scholar 

  40. Monsoor MA, Proctor A (2004) J Food Sci 69:C632–C636

    CAS  Google Scholar 

  41. Gyawali R, Seo H, Shim S, Ryu K, Kim W, You S, Kim K (2008) Eur Food Res Technol 226:577–582

    Article  CAS  Google Scholar 

  42. Nolasco SM, Aguirrezabal LAN, Crapiste GH (2004) J Am Oil Chem Soc 81:1045–1051

    Article  CAS  Google Scholar 

  43. Kriese U, Schumann E, Weber WE, Beyer M, Bruhl L, Matthaus B (2004) Euphytica 137:339–351

    Article  CAS  Google Scholar 

  44. Lalas S, Gortzi O, Tsaknis J, Sflomos K (2007) Int J Mol Sci 8:533–540

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Gray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisk, I.D., Gkatzionis, K., Lad, M. et al. Gamma-irradiation as a method of microbiological control, and its impact on the oxidative labile lipid component of Cannabis sativa and Helianthus annus . Eur Food Res Technol 228, 613–621 (2009). https://doi.org/10.1007/s00217-008-0970-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0970-3

Keywords

Navigation