Skip to main content
Log in

High-pressure shift freezing: recrystallization during storage

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

High-pressure shift freezing has been proposed as a method to produce frozen food with smaller ice crystal size and, consequently, with reduced tissular damage and higher overall quality. The fate of this initially improved crystal size distribution, decisive for the long-term value of this procedure, is unclear. The recrystallization behaviour of partially frozen aqueous solutions, as food models, is here compared with that of similar classically frozen samples. A microscopic observation cell has been specially designed for this purpose. The temporal evolution of high-pressure shift frozen ice crystals has been fitted to different mechanism models and is found to be similar within experimental error to that of classically frozen samples. However, differences in the shape evolution of crystals have been detected, which can be ascribed to small differences in the initial distribution. The implications of these observations for the long-term storage of frozen food are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fuchigami M, Kato N, Teramoto A (1996) Effect of pressure-shift freezing on texture, pectic composition and histological structure of carrots. In: Hayashi R, Balny C (eds) High pressure bioscience and biotechnology. Elsevier, Amsterdam, pp 379–386

    Chapter  Google Scholar 

  2. Koch H, Seyderhelm WP, Kalichevsky MT, Knorr D (1996) Nahrung 40:125–131. doi:10.1002/food.19960400306

    Article  Google Scholar 

  3. Sanz PD, Solas M, Otero L, de Elvira C, Carrasco JA, Molina-García AD (1998) Polish J Food Nutrit Sci 7/48:65–68

    Google Scholar 

  4. Chevalier D, Sequeira-Muñoz A, Le Bail A, Simpson BK, Ghoul M (2001) Innovative Food Sci Emerging Technol 1:193–201. doi:10.1016/S1466-8564(00)00024-2

    Article  Google Scholar 

  5. Thiebaud M, Dumay EM, Cheftel JC (2002) Food Hydrocolloids 16:527–545. doi:10.1016/S0268-005X(01)00133-3

    CAS  Google Scholar 

  6. Burke MJ, George MF, Bryant RG (1975) Water in plant tissues and frost hardiness. In: Duckworth RB (ed) Water relations of foods, Food science and technology monographs. Academic Press, New York, pp 111–135

    Google Scholar 

  7. Gilpin RR (1977) J Heat Transfer 99:419–424

    CAS  Google Scholar 

  8. Le Bail A, Chevalier D, Mussa DM, Ghoul M (2002) Int J Refrigerat 25:504–513. doi:10.1016/S0140-7007(01)00030-5

    Article  CAS  Google Scholar 

  9. Martino MN, Otero L, Sanz PD, Zaritzky NE (1998) Meat Sci 50:303–313. doi:10.1016/S0309-1740(98)00038-2

    Article  CAS  Google Scholar 

  10. Chevalier D, Sentissi M, Havet M, Le Bail A (2000) J Food Sci 65:329–333. doi:10.1111/j.1365-2621.2000.tb16002.x

    Article  CAS  Google Scholar 

  11. Schmitt JM, Schramm MJ, Pfanz H, Coughlan S, Heber U (1985) Cryobiology 22:93–104. doi:10.1016/0011-2240(85)90012-4

    Article  CAS  Google Scholar 

  12. Fennema OR (1973) Nature of the freezing process. In: Fennema OR, Powrie WD, Marth EH (eds) Low temperature preservation of foods and living matter. Marcel Dekker, New York, pp 151–239

    Google Scholar 

  13. Sutton RL, Evans ID, Crilly JF (1994) J Food Sci 59:1227–1233. doi:10.1111/j.1365-2621.1994.tb14683.x

    Article  CAS  Google Scholar 

  14. Sutton RL, Lips A, Piccirrillo G, Sztchlo A (1996) J Food Sci 61:741–745. doi:10.1111/j.1365-2621.1996.tb12195.x

    Article  CAS  Google Scholar 

  15. Donhowe DP, Hartel RW (1996) Int Dairy J 6:1191–1208. doi:10.1016/S0958-6946(96)00029-5

    Article  Google Scholar 

  16. Hartel RW (1998) Mechanism and kinetic of recrystallization in ice cream. In: Reid DS (ed) Properties of water in foods: ISOPOW 6. Blackie Academic & Professional, London, pp 287–319

    Google Scholar 

  17. Flores AA, Goff HD (1999) J Dairy Sci 82:1408–1415

    Article  CAS  Google Scholar 

  18. Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 10:35–50. doi:10.1016/0022-3697(61)90054-3

    Article  Google Scholar 

  19. Wagner C (1961) Z Elektrochem 65:581–591

    CAS  Google Scholar 

  20. Kahlweit M (1975) Adv Colloid Interf Sci 5:1–35. doi:10.1016/0001-8686(75)85001-9

    Article  CAS  Google Scholar 

  21. Jain SC, Hughes AE (1978) J Mater Sci 13:1611–1631. doi:10.1007/BF00548725

    Article  CAS  Google Scholar 

  22. Williamson A-M, Lips A, Clark A, Hall D (1999) Faraday Discuss 112:31–49. doi:10.1039/a900710e

    Article  CAS  Google Scholar 

  23. Martino MN, Zaritzky NE (1987) Sci Aliments 7:147–166

    CAS  Google Scholar 

  24. Martino MN, Zaritzky NE (1989) Cryobiology 26:138–148. doi:10.1016/0011-2240(89)90044-8

    Article  CAS  Google Scholar 

  25. Cheftel JC, Lévy J, Dumay E (2000) Food Rev Int 16:453–483

    Article  CAS  Google Scholar 

  26. Li B, Sun DW (2001) J Food Eng 54:175–182. doi:10.1016/S0260-8774(01)00209-6

    Article  Google Scholar 

  27. Chevalier D, Le Bail A, Ghoul M (2000) J Food Eng 46:287–293. doi:10.1016/S0260-8774(00)00090-X

    Article  Google Scholar 

  28. Zhu S, Le Bail A, Ramaswamy HS (2003) J Food Process Preservat 27:427–444. doi:10.1111/j.1745-4549.2003.tb00528.x

    Article  Google Scholar 

  29. Zhu S, Ramaswamy HS, Le Bail A (2005) J Food Eng 66:69–76. doi:10.1016/j.jfoodeng.2004.02.035

    Article  Google Scholar 

  30. Fernández PP, Otero L, Guignon B, Sanz PD (2006) Food Hydrocolloids 20:510–522. doi:10.1016/j.foodhyd.2005.04.004

    Article  CAS  Google Scholar 

  31. Otero L, Sanz PD (2000) Biotechnol Prog 16:1030–1036. doi:10.1021/bp000122v

    Article  CAS  Google Scholar 

  32. Otero L, Sanz PD (2006) J Food Eng 72:354–363. doi:10.1016/j.jfoodeng.2004.12.015

    Article  Google Scholar 

  33. Guignon B, Otero L, Sanz PD, Molina-García AD (2005) Biotechnol Prog 21:439–445. doi:10.1021/bp049666d

    Article  CAS  Google Scholar 

  34. Barbosa-Cánovas GV, Altunakar B, Mejía-Lorío DJ (2005) Freezing Fruits and Vegetables. FAO Agricultural Services Bulletin 158. FAO, Rome. http://www.fao.org/ag/ags/subjects/en/harvest/docs/ags_bulletins/freezing_of_fruits_and_vegetables.pdf

  35. Molina-Garcia AD (2002) Biotechnol Gen Eng Rev 19:3–54

    CAS  Google Scholar 

  36. Kaufmann DK (1960) Sodium chloride. Acs monographs series no. 145. Reinhold, New York

    Google Scholar 

  37. Otero L, Molina-Garcia AD, Sanz PD (2000) Innovative Food Sci Emerg Technol 1:119–126. doi:10.1016/S1466-8564(00)00009-6

    Article  Google Scholar 

  38. Fuchigami M, Ogawa N, Teramoto A (2002) Innovative Food Sci Emerg Technol 3:139–147. doi:10.1016/S1466-8564(02)00007-3

    Article  CAS  Google Scholar 

  39. Earl FA, Tracy PH (1960) Ice Cream Trade J 56:36–37, 40, 42, 78–80

    Google Scholar 

  40. Hartel RW (1996) Trends Food Sci Technol 7:315–321. doi:10.1016/0924-2244(96)10033-9

    Article  CAS  Google Scholar 

  41. Regand H, Goff D (2003) Food Hydrocoll 17:95–102. doi:10.1016/S0268-005X(02)00042-5

    Article  CAS  Google Scholar 

  42. Kalichevsky MT, Knorr D, Lillford PJ (1995) Trends Food Sci Technol 6:253–259. doi:10.1016/S0924-2244(00)89109-8

    Article  CAS  Google Scholar 

  43. Otero L, Sanz PD (2000) Biotechnol Progr 16:1030–1036. doi:10.1021/bp000122v S8756-7938(00)00122-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed with financial support from the “Plan Nacional de I+D+I” of the Spanish Ministry of Education and Science (MEC), through the AGL2007-63314/ALI and MALTA CONSOLIDER-INGENIO 2010 CSD2007-00045 projects; the CSIC, through the 200550F0191 project and the “IV PRICIT(2005-2008)”, CAM, Spain, through the 200670M060 project. P·P Fernández was supported by a CSIC (Spain) grant, within the I3P Program, partially funded by the European Social Fund. L. Otero was supported by a MEC (Spain) Ramón y Cajal research contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio D. Molina-García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, P.P., Otero, L., Martino, M.M. et al. High-pressure shift freezing: recrystallization during storage. Eur Food Res Technol 227, 1367–1377 (2008). https://doi.org/10.1007/s00217-008-0853-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0853-7

Keywords

Navigation