Skip to main content
Log in

Reactive oxygen species scavenging, metal chelation, reducing power and lipid peroxidation inhibition properties of different solvent fractions from Hizikia fusiformis

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The antioxidative properties of different organic and aqueous fractions obtained by solvent fractionation of 80% methanolic extract of Hizikia fusiformis were investigated for free-radical, reactive oxygen species scavenging (O2⋅−, H2O2, HO, NO), metal chelation, reducing power and lipid peroxidation (conjugated diene and thiobarbituric acid reactive substances formation) inhibition assays. Of the organic and aqueous fractions tested, the organic ethyl acetate and aqueous chloroform fractions were notably effective. Almost all fractions exhibited significantly higher activities on NO and 1,1-diphenyl-2-picrylhydrazyl scavenging compared with commercial antioxidants. The organic chloroform fraction showed the highest HO scavenging activity among other counterparts. The aqueous chloroform fraction demonstrated O2⋅− scavenging and metal chelating activities that are similar to those of butylated hydroxytoluene. The lipid peroxidation inhibition was significantly higher in the organic ethyl acetate fraction than that of α-tocopherol. These data suggest that both organic and aqueous fractions are rich in hydrophobic and hydrophilic antioxidative compounds with different antioxidative properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yıldırım A, Mavi A, Oktay M, Kara AA, Algur ÖF, Bilaloglu V (2000) J Agric Food Chem 48:5030–5034

    Article  PubMed  Google Scholar 

  2. Halliwell B, Gutteridge JM (1989) Free radical in biology and medicine. Clarendon, Oxford, pp 23–30

    Google Scholar 

  3. Halliwell B (1994) Lancet 67:85–917

    Google Scholar 

  4. Fridovich I (1995) Annual Rev Biochem 64:97–112

    Article  CAS  Google Scholar 

  5. Yang MY, Han YK, Noh BS (2000) Korean J Food Sci Technol 9:146–150

    Google Scholar 

  6. Ukeda H, Shimamura T, Tsubouchi M, Harada Y, Nakai Y, Sawamura M (2002) Japan Soc Anal Sci 18:1151–1154

    CAS  Google Scholar 

  7. Büyükokuro¢g¨lu ME, Gülçin I, Oktay M, Küfrevio¢g¨lu Ö (2001) Pharmacol Res 44:491–5

    Article  PubMed  Google Scholar 

  8. Shahidi F, Wanasundara PKJPD (1992) Crit Rev Food Sci Nutr 32:67–103

    CAS  PubMed  Google Scholar 

  9. Harris ML, Schiller HJ, Reilly PM, Donowitz M, Grisham MB, Bulkley GB (1992) Pharmacol Exp Ther 53:375–408

    Article  CAS  Google Scholar 

  10. Wagner JR, Motchnik PA, Stocker R, Sies H, Ames BN (1993) J Biol Chem 268:18502–18506

    CAS  PubMed  Google Scholar 

  11. Madhavi DL, Deshpande SS, Salunkhe DK (1996) Food Antioxidants. Basel, New York, pp 1–4

    Google Scholar 

  12. Gülçin I, Oktay M, Küfrevio¢g¨lu Ö, Aslan A (2002) J Ethnopharmacol 79:325–329

    Article  PubMed  Google Scholar 

  13. Sherwin ER (1990) In: Branen R (ed) Food additives. Marcel Dekker, New York, pp 139–193

    Google Scholar 

  14. Gülçin I, Büyükokuroglu ME, Küfrevioglu ÖI (2003) J Pineal Res 34:278–281

    PubMed  Google Scholar 

  15. Hotta H, Nagano S, Ueda M, Tsujino Y, Koyama J, Osakai T (2002) Biochem Biophys Acta 1572:123–132

    CAS  PubMed  Google Scholar 

  16. Rice-Evans CA, Muller NJ, Bolwell PG, BramLey PM, Pridham JB (1995) Free Radic Res 22:375–383

    CAS  PubMed  Google Scholar 

  17. Jorgensen LV, Madsen HL, Thomsen MK, Dragsted LO, Skibsted LH (1999) Free Radic Res 30:207–220

    CAS  PubMed  Google Scholar 

  18. Xiaojon Y, Yoshihiro C, Masahiro S, Tadahiro N (1999) Biosci Biotechnol Biochem 63(3):605–607

    PubMed  Google Scholar 

  19. Athukorala Y, Lee KW, Song CB, Ahn CB, Shin TS, Cha YJ, Shahidi F, Jeon YJ (2003) J Food Lipids 10:179–265

    Google Scholar 

  20. Siriwardhana N, Lee KW, Kim SH, Ha JW, Park GT. Jeon YJ (2003) food Sci Tech Int 10:65–68

    Article  Google Scholar 

  21. Siriwardhana N, Jeon YJ, Kim SH, Ha WJ, Lee KW (2003) Algae 19:59-68

    Google Scholar 

  22. Heo SJ, Lee KW, Song CB, Jeon YJ (2003) Algae 18:71–81

    Google Scholar 

  23. Ruperez P, Ahrazem O, Leal JA (2002) J Agric Food Chem 50:840–5

    Article  CAS  PubMed  Google Scholar 

  24. Nakano T, Watanae M, Sato M, Takeuchi M (1995) Plant Sci 104:127–133

    Article  CAS  Google Scholar 

  25. Yoshie Y, Wang W, Petillo D, Suzuki T (2000) Fish Sci 66:998–1000

    Article  CAS  Google Scholar 

  26. Nakamura T, Nagayama K, Uchida K, Tanaka R (1996) Fish Sci 62:923–926

    CAS  Google Scholar 

  27. Santoso J, Yoshie Y, Suzuki T (2002) Fish Sci 68(Suppl):1647–1648

    Google Scholar 

  28. Kim KI, Seo HD, Lee HS, Cho HY, Yang HC (1998) Korean J Food Sci Nutr 27:1204–1210

    Google Scholar 

  29. Nagai T, Yukimoto T (2003) Food Chem 81:327–332

    Article  CAS  Google Scholar 

  30. Siriwardhana N, Lee KW, Kim SH, Ha JH, Jeon YJ (2003) Food Sci Tech Int 9(5):0339–348

    Article  Google Scholar 

  31. Brand-Williams W (1995) Food Sci Technol (Lond) 28:25–30

    CAS  Google Scholar 

  32. Nagai T, Inoue I, Inoue H, Suzuki N (2003) Food Chem 80:29–33

    Article  CAS  Google Scholar 

  33. Muller HE (1995) Zentralbl Bakterio Mikrobio Hyg 259:151–158

    Google Scholar 

  34. Chung SK, Osawa T, Kawakishi S (1997) Biosci Biotechnol Biochem 61:118–123

    CAS  Google Scholar 

  35. Garrat DC (1964) The quantitative analysis of drugs, vol 3. Chapman and Hall, Japan, pp 456–458

    Google Scholar 

  36. Decker EA, Welch B (1990) J Agric Food Chem 38:674–677

    CAS  Google Scholar 

  37. Oyaizu M (1986) Jpn J Nutr 44:307–315

    CAS  Google Scholar 

  38. Roozen J, Frankel E, Kinsella J (1994) Food Chem 50:1183–1190

    Google Scholar 

  39. Madsen HL, Sorensen B, Skibsted LH, Bertelesen G (1998) Food Chem 63(2):173–180

    Article  CAS  Google Scholar 

  40. Chandler SF, Dodds JH (1993) Plant Cell Rep 2:105–110

    Google Scholar 

  41. Cheeseman KH, Slater TF (1993) Br Med Bull 49:481–493

    CAS  PubMed  Google Scholar 

  42. Hatano T (1995) Nature Med (Tokyo) 49:357–363

    CAS  Google Scholar 

  43. Hatano T, Edamatsu R, Mori A, Fujita Y, Yasuhara E (1989) Chem Pharm Bull 37:2016–2021

    CAS  Google Scholar 

  44. Ruberto G, Baratta MT, Biondi DM, Amico V (2001) J Appl Physio 13:403–407

    Google Scholar 

  45. Liu F, Ng TB (2000) Life Sci 66:725–735

    Article  CAS  PubMed  Google Scholar 

  46. Kitada M, Igarashi K, Hirose S, Kitagawa H. (1979) Biochem Biophys Res Commun 87:38–94

    Google Scholar 

  47. Marcocci PL, Sckaki A, Albert GM, (1994) Methods Enzymol 234:462–475

    CAS  PubMed  Google Scholar 

  48. Moncada S, Palmer RM, Higgs EA (1991) Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  49. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Arch Biochem Biophys 288:481–487

    CAS  PubMed  Google Scholar 

  50. Yermilov V, Rubio J, Becchi M, Friesen MD, Pignatelli B, Ohshima H (1995) Carcinogenesis 16:2045–2050

    CAS  PubMed  Google Scholar 

  51. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Proc Nat Acad Sci USA 87:1620–1624

    CAS  PubMed  Google Scholar 

  52. Halliwell B (1997) Nutr Rev 55:S44–459; discussion S49–S52

    CAS  PubMed  Google Scholar 

  53. Halliweill B (1991. Am J Med 91(3):14–19

    Article  Google Scholar 

  54. Duh PD, Tu YY, Yen GC (1999) Lebnesmittel-Wissenchaft Technol 32:269–277

    Article  CAS  Google Scholar 

  55. Gordon MH (1990) The mechanism of the antioxidant action in vitro. In: Hudson BJF( ed) Food antioxidants, Elsevier, London, pp 1–18

    Google Scholar 

  56. Gülçin l, Beydemir S, Ahmet HA, Elmasta M, Büyükokuroglu ME (2004) Pharmacol Res 49:59–66

    Article  PubMed  Google Scholar 

  57. Meir S, Kanner J, Akiri B, Hadas SP (1995) J Agric Food Chem 43:1813–1817

    CAS  Google Scholar 

  58. Diplock AT (1997) Free Radic Res 27:511–532

    CAS  PubMed  Google Scholar 

  59. Abdalla AE, Roozen JP (1999) Food Chem 64:323–329

    Article  CAS  Google Scholar 

  60. Tanaka M, Kuei CW, Nagashima Y, Taguchi T (1998) Nippon Suisan Gakkaishi 54:1409–1414

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Brain Korea 21 project in 2003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Jin Jeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karawita, R., Siriwardhana, N., Lee, KW. et al. Reactive oxygen species scavenging, metal chelation, reducing power and lipid peroxidation inhibition properties of different solvent fractions from Hizikia fusiformis. Eur Food Res Technol 220, 363–371 (2005). https://doi.org/10.1007/s00217-004-1044-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-004-1044-9

Keywords

Navigation