Skip to main content
Log in

Characterisation of carrageenan and whey protein gels using NMR PGSTE diffusion experiments

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

NMR PGSTE diffusion experiments are used to characterise the gelling behaviour of carrageenan mixtures and whey protein mixtures. The structure of developing networks can be observed as a function of the composition of the mixture (concentration of hydrocolloids, sugars and salts), the measuring temperature, and the protein denaturation, depending on the denaturation temperature and duration. Besides the fundamental aspects of these preliminary studies, these data are helpful for modelling processes sufficiently precisely for industrial production, to guarantee specific properties concerning the flow-, gelling- and syneresis/storage-behaviour and the texture and sensorial behaviour of food products, and to realise a process and quality control of thermal protein denaturation and hydrocolloid gelling processes. Therefore, further quantitative correlations between macroscopic quantities and the available NMR parameters must be established to trigger industrial applications of NMR diffusion experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lewis GP, Derbyshire W, Ablett S, Lillford PJ, Norton IT (1987) Carbohyd Res 160:397–410

    Article  CAS  Google Scholar 

  2. Suggett A (1975) Polysaccharides. In: Franks F (ed) Water (Vol 4). Plenum, New York, pp 550–567

  3. van de Velde F, Peppelman HA, Rollema HS, Tromp RH (2001) Carbohyd Res 331:271–283

    Article  Google Scholar 

  4. Belitz HD, Grosch W, Schieberle P (2001) Lehrbuch der Lebensmittelchemie, 5th edn. Springer, Berlin Heidelberg New York

  5. Kneifel W, Paquin P, Abert T, Richard J-P (1991) J Dairy Sci 74:2027–2041

    CAS  Google Scholar 

  6. Edmond E, Ogston AG (1968) Biochem J 109:569–572

    CAS  PubMed  Google Scholar 

  7. Syrbe A, Bauer WJ, Klostermeyer H (1998) Int Dairy J 8:179–193

    Article  CAS  Google Scholar 

  8. Kessler HG (1996) Lebensmittel- und bioverfahrenstechnik – molkereitechnologie, 4th edn. Verlag A. Kessler, München, Germany

  9. Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ (1996) Protein NMR spectroscopy, principles and practice. Academic, New York

  10. Nölting B (1999) Protein folding kinetics. Springer, Berlin Heidelberg New York

  11. Lagaly G, Schulz O, Zimehl R (1997) Dispersionen und emulsionen. Steinkopff, Darmstadt, Germany

  12. Spiegel T (1999) Thermische denaturierung und aggregation von molkenproteinen in ultrafiltrationsmolkenkonzentraten. PhD Thesis, TU München, Freising-Weihenstephan, Germany

  13. Götz J, Köhler P (2003) J Agr Food Chem (in press)

  14. Hinrichs R, Götz J, Weisser H (2003) Food Chem 82:155–160

    Article  CAS  Google Scholar 

  15. Ohtsuka A, Watanabe T (1996) Carbohyd Polym 30:135–140

    Article  CAS  Google Scholar 

  16. Katz E (1996) High-performance liquid chromatography. Wiley, Chichester, UK

  17. Abragam A (1961) Principles of nuclear magnetism. Clarendon, Oxford, UK

  18. Farrar TC, Becker ED (1971) Pulse and Fourier transform NMR. Academic, New York

  19. Callaghan PT (1991) Principles of Nuclear Magnetic Resonance Microscopy. Clarendon, Oxford, UK

  20. Stejskal EO, Tanner JE (1965) J Chem Phys 41:288–232

    Google Scholar 

  21. Tanner JE, Stejskal EO (1968) J Chem Phys 49:1768–1777

    CAS  Google Scholar 

  22. Kärger J, Pfeifer H (1994) Magn Reson Imaging 12:235–239

    PubMed  Google Scholar 

  23. Kimmich R (1997) NMR tomography diffusometry relaxometry. Springer, Berlin Heidelberg New York

  24. Stejskal EO (1965) J Chem Phys 43:3597–3603

    Google Scholar 

  25. Tanner JE (1970) J Chem Phys 52:2523–2526

    CAS  Google Scholar 

  26. Colquhoun IJ, Goodfellow BJ (1994) Nuclear Magnetic Resonance Spectroscopy. In: Wilson RH (ed) Spectroscopic techniques for food analysis. Wiley, New York

  27. Hertz HG (1986) Nuclear Magnetic Resonance spectroscopy. In: Dogonadze RR, Kálmán E, Kornyshev AA, Ulstrup J. (eds) The chemical properties of solvation, Part B: Spectroscopy of solvation. Elsevier, Amsterdam

  28. Kärger J, Fleischer G (1994) TRAC–Trend Anal Chem 12:145–156

    Google Scholar 

  29. Holz M (1986) Nachr Chem Tech Lab 34:858–864

    CAS  Google Scholar 

  30. Latour LL, Kleinberg RL, Mitra PP, Sotak CH (1995) J Magn Reson Ser A 112:83–91

    Article  CAS  Google Scholar 

  31. Latour LL, Mitra PP, Kleinberg RL, Sotak CH (1993) J Magn Reson Ser A 101:342–346

    Article  CAS  Google Scholar 

  32. Velan SS, Chandrakumar N (1996) J Magn Reson 123:122–125

    Article  CAS  Google Scholar 

  33. Mitra PP (1997) Physica A 241:122–127

    Article  Google Scholar 

  34. Watson AT, Chang CTP (1997) Prog Nucl Mag Res Sp 31:343–386

    Article  CAS  Google Scholar 

  35. Darken LS (1948) T Metall Soc AIME 175:184–201

    Google Scholar 

  36. Friedmann TE (1999) Flow of non-Newtonian fluids through compressible porous media in centrifugal filtration processing. PhD Thesis, ETH, Zürich, Germany

  37. Friedmann TE, Windhab E (1998) Separ Sci Technol 33:2221–2239

    CAS  Google Scholar 

  38. Darcy H (1865) Les fontaines publiques de la ville de Diyon. Dalmont, Paris

Download references

Acknowledgements

We are grateful for the financial support of the “Bundesministerium für Wirtschaft und Technologie (BMWi)” in the “Arbeitsgemeinschaft industrieller Forschungsvereinigungen” “Otto von Guericke” e.V. (AiF) within the project AiF-FV-Nr. 12779 N (Struktur und Wasserbindung in Mischgelen aus Milchproteinen und Hydrokolloiden – Messmethodik und Einfluss von Prozessparametern). Furthermore, we would like to thank the Bruker BioSpin GmbH, Rheinstetten, Germany for technical and scientific support, and Dr. Joop de Vries and Jesper Wichmann, Danisco Cultor, Braband, Denmark, who placed the data concerning the molecular data of the studied carrageenan types at our disposal. Finally, we would also like to acknowledge the helpful and constructive comments of the referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Götz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götz, J., Zick, K., Hinrichs, R. et al. Characterisation of carrageenan and whey protein gels using NMR PGSTE diffusion experiments. Eur Food Res Technol 218, 323–332 (2004). https://doi.org/10.1007/s00217-003-0861-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-003-0861-6

Keywords

Navigation