Skip to main content
Log in

Composition of the glutenin macropolymer: effects of flour quality and nonamylolytic enzyme addition

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The effects of the non-amylolytic enzymes pentosanase (PP), glucose oxidase (GLZ) and laccase (LAC), singly and in binary and ternary combinations, and wheat flour—a pure cultivar F0, and low- grade F1 and high-grade F2 commercial blends—on the electrophoretic pattern of the glutenin macropolymer (GMP) were investigated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS–PAGE). GMP profiles of high (HMW), medium (MMW) and low (LMW) molecular weight glutenin subunits (GS) were correlated with dough and GMP characteristics and with bread quality and keepability.

The total relative percentages of separated HMW, MMW and LMW-GS of GMP in control and enzyme-supplemented samples were: 33–37, 11–16 and 46–54% (F0), 47–74, 0 and 26–57% (F1) and 30–47, 15–18 and 32–38% (F2), respectively. HMW-GS/LMW-GS ratios, a quality index of glutenin, were found to range from 0.63 to 0.80 for all flour GMP. Enzyme addition induced moderate effects in pure wheat cultivar F0. Combinations of PP and GLZ (PPGLZ) allowed glutenin repolymerization after resting, leading to an increase of the bands of 104–107 and 88–90 kDa in GMP by SDS–PAGE. Analogously, PP plus LAC (PPLAC) and LAC alone increased the amount of the subunit of 81–82 kDa. Subunits of LMW increased with PPLAC and LAC, the subunit of 37–38 kDa having a higher percentage in GMP probably due to the presence of α-, β- and γ-gliadins besides the LMW-GS. Only the subunit of 81–82 kDa was positively associated with the dynamic rheological moduli G′ and G* and the subunit of 88–90 kDa correlated with a lower delta angle and, consequently, with a more elastic gel. After fermentation, the total percentage of subunits of HMW, MMW and LMW changed mainly in low-grade flour F1 (36–37, 17–19 and 14–19%) compared with high-grade flour F2 (32–37, 14–17 and 47–51%). The subunit of HMW with MW of 120–125 kDa (F1) and 93–95 kDa (F2) was positively correlated with the specific volume of breads and negatively with firmness of fresh and stored bread. Subunits of MMW negatively influenced the quality of fresh and stored bread of F1. The ratio HMW/LMW was positively correlated with bread firmness during staling in breads prepared with F2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khelifi D, Branlard G (1992) J Cereal Sci 16:195–209

    CAS  Google Scholar 

  2. Gupta RB, Paul JG, Cornish GB, Palmer GA, Békés F, Rathjen AJ (1994) J Cereal Sci 19:9–17

    Article  CAS  Google Scholar 

  3. Wieser H, Kieffer P (2001) J Cereal Sci 34:19–27

    Article  CAS  Google Scholar 

  4. Schofield JD (1994) Wheat proteins: structure and functionality in milling and breadmaking. In: Bushuk W, Rasper V (eds) Wheat: production, composition and utilization. Blackie, Glasgow, pp 73–100

  5. Weegels PL, Hamer RJ, Schofield JD (1996) J Cereal Sci 23:1–17

    Article  CAS  Google Scholar 

  6. Lindsay MP, Skerritt JH (1998) J Agric Food Chem 46:3447–3457

    Google Scholar 

  7. Lindsay MP, Skerritt JH (1999) Trends Food Sci Technol 10:247–253

    Article  CAS  Google Scholar 

  8. Gupta RB, Kahn K, McRitchie F (1993) J Cereal Sci 18:23–41

    Article  CAS  Google Scholar 

  9. Payne PI, Nightingale MA, Krattiger AF, Holt LM (1987) J Sci Food Agric 440:51–65

    Google Scholar 

  10. Weegels PL, Hamer RJ, Schofield JD (1997) J Cereal Sci 25:155–163

    Article  CAS  Google Scholar 

  11. Veraverkebe WS, Delcour JA (2002) Crit Rev Food Sci Nutr 42:179–208

    PubMed  Google Scholar 

  12. Shewry PR, Halford NG, Tatham AS (1992) J Cereal Sci 15:105–120

    CAS  Google Scholar 

  13. Payne PI, Corfield KG, Blackman JA (1979) Theor Appl Genet 55:153–159

    CAS  Google Scholar 

  14. Masci S, Lafiandra D, Procedi E, Lew EJL, Tao HP, Kasarda DD (1993) Cereal Chem 70:581–585

    CAS  Google Scholar 

  15. van Oort MG, van Straaten F, Laane C (1995) Int Food Ingred 2:23–27

    Google Scholar 

  16. Weegels PL, Hamer RJ (1992) Cereal Foods World 37:379–385

    CAS  Google Scholar 

  17. Martínez-Anaya MA, Jiménez T (1998) Z Lebensm Unters Forsch A 206:134–142

    Article  Google Scholar 

  18. Vemulapalli V, Miller KA, Hoseney RC (1998) Cereal Chem 75:439–442

    CAS  Google Scholar 

  19. Primo-Martín C, Martínez-Anaya MA (2003) J Food Sci 68:31–41

    Google Scholar 

  20. Si QS (1994) International Patent Application PCT/DK94/00232

  21. Vemulapalli V, Hoseney RC (1998) Cereal Chem 75:859–862

    CAS  Google Scholar 

  22. Hilhorst R, Dunnewind B, Orsel R, Stegeman P, Van Vliet T, Gruppen H, Schols HA (1999) J Food Sci 64:808–813

    CAS  Google Scholar 

  23. Souppe J (1997) VII Encuentro para la aplicación industrial de enzimas. Jornadas IQS, Barcelona

  24. Primo-Martín C, Lichtendonk W, Plitjer J, Wang M, Hamer RJ (2003) In: Courtin CM, Veraverbeke WS, Delcour JA (eds) Recent advances in enzymes in grain processing. ACCO, Leuven, pp 261–267

  25. Primo-Martín C, Lichtendonk W, Plitjer J, Hamer RJ (2003) J Cereal Sci (submitted)

  26. Figueroa-Espinoza MC, Rouau X (1998) Cereal Chem 75:259–265

    CAS  Google Scholar 

  27. Mccleary BV, Sheenan H (1987) J Cereal Sci 6:237–251

    CAS  Google Scholar 

  28. Primo-Martín C, Valera R, Martínez-Anaya MA (2003) J Agric Food Chem 51:4673–4679

    Google Scholar 

  29. Kieffer R, Wieser H, Henderson MJ, Graveland A (1998) J Cereal Sci 27:53–60

    Article  Google Scholar 

  30. ICC Standard Methods (1994) International Association for Cereal Chemistry. Gluten Index No 155

  31. Graveland A, Bongers P, Bosveld P (1979) J Sci Food Agric 30:71–84

    Google Scholar 

  32. Weegels PL, Orsel R, van de Pijpekamp AM, Lichtendonk WJ, Hamer RJ, Schofiels JD (1995) J Cereal Sci 21:117–126

    CAS  Google Scholar 

  33. ICC Standard Methods (1995) International Association for Cereal Chemistry. Protein No 105/2

  34. Hashimoto S, Shogren MD, Pomeranz Y (1987) Cereal Chem 64:30–64

    CAS  Google Scholar 

  35. Delcour JA, Vanhamel S, De Geest C (1989) Cereal Chem 66:107–111

    CAS  Google Scholar 

  36. Jiménez T, Martínez-Anaya MA (2000) Food Sci Technol Int 6:197–205

    Google Scholar 

  37. Jiménez T, Martínez-Anaya MA (2001) Food Sci Technol Int 7:5–14

    Google Scholar 

  38. Bekkers ACAPA, Lichtendonk WJ, Graveland A, Plitjer JJ (2000) Wheat gluten. In: Shewry PR, Tatham AS (eds) Proceedings of the 7th international workshop Gluten 2000. Royal Society of Chemistry, Cambridge

  39. Don JAC, Lichtendonk WL, Plitjer JJ, Hamer RJ (2003) J Cereal Sci 37:1–7

    Article  CAS  Google Scholar 

  40. Laemmli UK (1970) Nature 227:680–685

    PubMed  Google Scholar 

  41. Jood SJ, Schofield D, Tsiami AA, Bollecker S (2001) Int J Food Sci Technol 36:573–584

    Google Scholar 

  42. Rodríguez Quijano M, Vázquez F, Carrillo JM (2002) XIV Jornadas técnicas sobre la calidad de los trigos de España. Asociación Española de Técnicos Cerealistas, Valencia, pp II.5.1–II.5.20

  43. Wieser H, Seilmeier W, Kieffer R (1994) Gluten proteins 1993. Assoc Cereal Res, Detmold, pp 141–150

  44. Graveland A, Bosveld P, Lichtendonk WJ, Moonen JHE (1980) Biochem Biophys Res Commun 93:1189–1195

    CAS  PubMed  Google Scholar 

  45. Hamer RJ, Lichtendonk WJ (1987) In: Lasztity R, Békés F (eds) Proceedings of the third international workshop on gluten proteins. World Scientific, Singapore, pp 227–237

  46. Weegels PL, Hamer RJ, Schofiels JD (1997) J Cereal Sci 25:165–173

    Article  CAS  Google Scholar 

  47. Luckow OM, Dyck PL, Bushuk W (1989) Cereal Chem 66:531–532

    Google Scholar 

  48. Singh NK, Donovan R, MacRitchie F (1990) Cereal Chem 67:161–170

    CAS  Google Scholar 

  49. Primo-Martín C, Martínez-Anaya MA (2003) Molinería Panadería 1114:30–38

Download references

Acknowledgements

The authors thank the Spanish Institutions Comisión Interministerial de Ciencia y Tecnología (Project CICYT. ALI98-1039) and Ministerio de Ciencia y Tecnología (Project AGL2001-1273) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concepción Collar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Primo-Martín, C., Martínez-Anaya, M.A. & Collar, C. Composition of the glutenin macropolymer: effects of flour quality and nonamylolytic enzyme addition. Eur Food Res Technol 218, 428–436 (2004). https://doi.org/10.1007/s00217-003-0849-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-003-0849-2

Keywords

Navigation