Skip to main content

Advertisement

Log in

A microfluidic chip using Au@SiO2 array–based highly SERS-active substrates for ultrasensitive detection of dual cervical cancer–related biomarkers

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a microfluidic chip using Au@SiO2 array–based highly active SERS substrates was developed for quantitative detection of squamous cell carcinoma antigen (SCCA) and carcinoembryonic antigen (CEA) associated with cervical cancer. The chip consisted of six functional units with pump-free design, enabling parallel detection of multiple samples in an automatic manner without external pumps and improving the portability. Ag nanocubes (AgNCs) were labeled with Raman reporters and coupled with antibodies (labeling) to prepare SERS tags, while the Au nanoparticle–modified SiO2 microsphere (Au@SiO2) array was conjugated with antibodies (coating) to generate the highly SERS-active capturing substrate. In the presence of target biomarkers, they were captured by SERS tags and capturing substrate, resulting in the formation of “sandwich” structures which were trapped in the detection chamber. As the immune reaction proceeded, a large number of “hot spots” were generated by the proximity of the Au@SiO2 array substrate and AgNCs, greatly amplifying SERS signals. With this chip, the limits of detection of the SCCA and CEA levels in human serum were estimated to be as low as 0.45 pg mL−1 and 0.36 pg mL−1, respectively. Furthermore, the good selectivity and reproducibility of this chip were confirmed. Finally, clinical serum samples were analyzed by this chip, and the outcomes were consistent with those of enzyme-linked immunosorbent assay (ELISA). Thus, the proposed microfluidic chip can be potentially applied for the clinical diagnosis of cervical cancer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Small W Jr, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, et al. Cervical cancer: a global health crisis. Cancer. 2017;123(13):2404–12.

    Article  PubMed  Google Scholar 

  2. Castle PE, Einstein MH, Sahasrabuddhe VV. Cervical cancer prevention and control in women living with human immunodeficiency virus. Cervical cancer prevention and control in women living with human immunodeficiency virus. CA-Cancer J Clin. 2021;71(6):505–26.

    Article  PubMed  Google Scholar 

  3. Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet. 2019;393(10167):169–82.

    Article  PubMed  Google Scholar 

  4. Pfaendler KS, Tewari KS. Changing paradigms in the systemic treatment of advanced cervical cancer. Am J Obstet Gynecol. 2016;214(1):22–30.

    Article  PubMed  Google Scholar 

  5. Zhu H. Squamous cell carcinoma antigen: clinical application and research status. Diagnostics. 2022;12(5):1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Colombo N, Carinelli S, Colombo A, Marini C, Rollo D, Sessa C. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23:27–32.

    Article  Google Scholar 

  7. Hao C, Zhang GQ, Zhang LJ. Serum CEA levels in 49 different types of cancer and noncancer diseases. In: Zhang L, editor. Glycans and glycosaminoglycans as clinical biomarkers and therapeutics, PT A. 2019;162:213–27.

  8. Tendler A, Kaufman HL, Kadish AS. Increased carcinoembryonic antigen expression in cervical intraepithelial neoplasia grade 3 and in cervical squamous cell carcinoma. Hum Pathol. 2000;31(11):1357–62.

    Article  CAS  PubMed  Google Scholar 

  9. Huang G, Chen R, Lu N, Chen Q, Lv W, Li B. Combined evaluation of preoperative serum CEA and CA125 as an independent prognostic biomarker in patients with early-stage cervical adenocarcinoma. Oncotargets Ther. 2020;13:5155–64.

    Article  CAS  Google Scholar 

  10. Akama K, Iwanaga N, Yamawaki K, Okuda M, Jain K, Ueno H, et al. Wash- and amplification-free digital immunoassay based on single-particle motion analysis. ACS Nano. 2019;13(11):13116–26.

    Article  CAS  PubMed  Google Scholar 

  11. Ragone A, Salzillo A, Spina A, Zappavigna S, Caraglia M, Sapio L, et al. Protein kinase a detection in human urine samples. J Clin Med. 2021;10(18):4096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sethi MK, Hancock WS, Fanayan S. Identifying N-glycan biomarkers in colorectal cancer by mass spectrometry. Acc Chem Res. 2016;49(10):2099–106.

    Article  CAS  PubMed  Google Scholar 

  13. Wang ZL, Wang ZY, Zong SF, Cui YP. Microfluidic SERS chip and its biosensing applications. Chinese Optics. 2018;11(3):513–30.

    Article  Google Scholar 

  14. Huang JA, Zhang YL, Ding H, Sun HB. SERS-enabled lab-on-a-chip systems. Adv Opt Mater. 2015;3(5):618–33.

    Article  CAS  Google Scholar 

  15. Wang CY, Mu XQ, Huo J, Zhang B, Zhang KY. Highly-efficient SERS detection for E. coli using a microfluidic chip with integrated NaYF4:Yb, Er@SiO2@Au under near-infrared laser excitation. Microsyst Technol. 2021;27(9):3285–91.

    Article  CAS  Google Scholar 

  16. Oliveira MJ, Cunha I, de Almeida MP, Calmeiro T, Fortunato E, Martins R, et al. Reusable and highly sensitive SERS immunoassay utilizing gold nanostars and a cellulose hydrogel-based platform. J Mater Chem B. 2021;9(36):7516–29.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou W, Tian YF, Yin BC, Ye BC. Simultaneous surface-enhanced Raman spectroscopy detection of multiplexed microRNA biomarkers. Anal Chem. 2017;89(11):6121–9.

    Article  Google Scholar 

  18. Hung LY, Wu HW, Hsieh K, Lee GB. Microfluidic platforms for discovery and detection of molecular biomarkers. Microflid Nanofluid. 2014;16(5):941–63.

    Article  CAS  Google Scholar 

  19. Mishra R, Zapatero-Rodríguez J, Sharma S, Kelly D, McAuley D, Gilgunn S, et al. Automation of multi-analyte prostate cancer biomarker immunoassay panel from whole blood by minimum-instrumentation rotational flow control. Sensor Actuat B-Chem. 2018;263:668–75.

    Article  CAS  Google Scholar 

  20. Ahi EE, Torul H, Zengin A, Sucularlı F, Yıldırım E, Selbes Y, et al. A capillary driven microfluidic chip for SERS based hCG detection. Biosens Bioelectron. 2022;195: 113660.

    Article  CAS  PubMed  Google Scholar 

  21. Gao R, Lv Z, Mao Y, Yu L, Bi X, Xu S, et al. SERS-based pump-free microfluidic chip for highly sensitive immunoassay of prostate-specific antigen biomarkers. ACS Sensors. 2019;4(4):938–43.

    Article  CAS  PubMed  Google Scholar 

  22. Chen PC, Cheng YF, Young KC, Hsieh HL, Yang CL. Design and characterization of a capillary-driven and parallelized microfluidic chip for distributing a liquid plug. Int J Precis Eng Manuf. 2016;17(11):1547–54.

    Article  Google Scholar 

  23. Guo J, Zeng F, Guo J, Ma X. Preparation and application of microfluidic SERS substrate: challenges and future perspectives. J Mater Sci Technol. 2020;37:96–103.

    Article  Google Scholar 

  24. Wang CY, Xu Y, Wang R, Zhao HZ, Xiang ST, Chen L, et al. Fabrication and effect study of microfluidic SERS chip with integrated surface liquid core optical waveguide modified with nano gold. Microsyst Technol. 2017;23(8):3059–68.

    Article  CAS  Google Scholar 

  25. Wang L, Zhou G, Xl Guan, Zhao L. Rapid preparation of surface-enhanced Raman substrate in microfluidic channel for trace detection of amoxicillin. Spectrochim Acta A. 2020;235:118262.

    Article  CAS  Google Scholar 

  26. Zhu C, Meng G, Zheng P, Huang Q, Li Z, Hu X, et al. A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv Mater. 2016;28(24):4871–6.

    Article  CAS  PubMed  Google Scholar 

  27. Xu S, Li H, Guo M, Wang L, Li X, Xue Q. Liquid-liquid interfacial self-assembled triangular Ag nanoplate-based high-density and ordered SERS-active arrays for the sensitive detection of dibutyl phthalate (DBP) in edible oils. Analyst. 2021;146(15):4858–64.

    Article  CAS  PubMed  Google Scholar 

  28. Fu H, Bao H, Zhang H, Zhao Q, Zhou L, Zhu S, et al. Quantitative surface-enhanced Raman spectroscopy for field detections based on structurally homogeneous silver-coated silicon nanocone arrays. ACS Omega. 2021;6(29):18928–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu Q, Liu HL, Wu Z, Liu A, Yao C, Li X, et al. Rough surface Au@Ag core-shell nanoparticles to fabricating high sensitivity SERS immunochromatographic sensors. J Nanobiotechnol. 2015;13(1):81.

    Article  Google Scholar 

  30. Chen YK, Li H, Chen JM, Li D, Zhang MY, Yu GH, et al. Self-generating nanogaps for highly effective surface-enhanced Raman spectroscopy. Nano Res. 2022;15(4):3496–503.

    Article  CAS  Google Scholar 

  31. Choi H-K, Park S-M, Jeong J, Lee H, Yeon GJ, Kim D-S, et al. Spatially controlled fabrication of surface-enhanced Raman scattering hot spots through photoinduced dewetting of silver thin films. J Phys Chem Lett. 2022;13(13):2969–75.

    Article  CAS  PubMed  Google Scholar 

  32. Perassi EM, Coronado EA. The structure, energy, confinement, and enhancement of hot spots between two nanoparticles. J Phys Chem C. 2013;117(15):7744–50.

    Article  CAS  Google Scholar 

  33. Pu H, Huang Z, Xu F, Sun DW. Two-dimensional self-assembled Au-Ag core-shell nanorods nanoarray for sensitive detection of thiram in apple using surface-enhanced Raman spectroscopy. Food Chem. 2021;343: 128548.

    Article  CAS  PubMed  Google Scholar 

  34. Chang YH, Hsu WH, Wu SL, Ding YC. The synthesis of a gold nanodisk-molecular layer-gold film vertical structure: a molecular layer as the spacer for SERS hot spot investigations. Mater Chem Front. 2017;1(5):922–7.

    Article  CAS  Google Scholar 

  35. Hu Y, Wang X, Zhang M, Wang S, Li S, Chen G. A hierarchical anodic aluminum oxide template. Nano Lett. 2021;21(1):250–7.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang QA, Li WY, Moran C, Zeng J, Chen JY, Wen LP, et al. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties. J AM Chem Soc. 2010;132(32):11372–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci. 1968;26(1):62–9.

    Article  Google Scholar 

  38. Kondo M, Shinozaki K, Bergstroem L, et al. Preparation of colloidal monolayers of alkoxylated silica particles at the air-liquid interface. Langmuir. 1955;11:394–7.

    Article  Google Scholar 

  39. Kagawa R, Takeyasu N, Kaneta T, Takemoto Y. Oil-in-water emulsion as fabrication platform for uniform plasmon-controlled two-dimensional metallic nanoparticle array. Appl Phys Express. 2016;9(7):075003.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82072088), the Social Development Foundation of Jiangsu (No. BE2018684), Yangzhou Science and Technology Project (No. YZ2017075), Contract for Maternal and Child Health Research Projects in Jiangsu Province (No. F201809), Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX22_1820), High-end talent support program of Yangzhou University, and the QingLan Project of Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowei Cao or Dan Lu.

Ethics declarations

Ethical approval

This work followed the ethical principles of medical research in the Helsinki declaration. All serum samples were collected with the approval of the Ethics Committee of Yangzhou University School of Clinical Medicine, China. And all donors signed an informed consent before serum collection.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1517 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Li, Z., Ge, S. et al. A microfluidic chip using Au@SiO2 array–based highly SERS-active substrates for ultrasensitive detection of dual cervical cancer–related biomarkers. Anal Bioanal Chem 414, 7659–7673 (2022). https://doi.org/10.1007/s00216-022-04296-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04296-w

Keywords

Navigation