Skip to main content
Log in

Electrochemical and electronic detection of biomarkers in serum: a systematic comparison using aptamer-functionalized surfaces

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sensitive and selective detection of biomarkers in serum in a short time has a significant impact on health. The enormous clinical importance of developing reliable methods and devices for testing serum levels of cardiac troponin I (cTnI), which are directly correlated to acute myocardial infarction (AMI), has spurred an unmatched race among researchers for the development of highly sensitive and cost-effective sensing formats to be able to differentiate patients with early onset of cardiac injury from healthy individuals with a mean cTnI level of 26 pg mL−1. Electronic- and electrochemical-based detection schemes allow for fast and quantitative detection not otherwise possible at the point of care. Such approaches rely largely on voltammetric and field-effect-based readouts. Here, we systematically investigate electric and electrochemical point-of-care sensors for the detection of cTnI in serum samples by using the same surface receptors, cTnI aptamer-functionalized CVD graphene-coated interdigated gold electrodes. The analytical performances of both sensors are comparable with a limit of detection (LoD) of 5.7 ± 0.6 pg mL−1(electrochemical) and 3.3 ± 1.2 pg mL−1 (electric). However, both sensors exhibit different equilibrium dissociation constant (KD) values between the aptamer-linked surface receptor and the cTnI analyte, being 160 pg mL−1 for the electrochemical and about three times lower for the electrical approach with KD = 51.4 pg mL−1. This difference is believed to be related to the use of a redox mediator in the electrochemical sensor for readout. The ability of the redox mediator to diffuse from the solution to the surface via the cTnI/aptamer interface is hindered, correlating to higher KD values. In contrast, the electric readout has the advantage of being label-free with a sensing limitation due to ionic strength effects, which can be limited using poly(ethylene) glycol surface ligands.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sahu P, Pinkalwar N, Dubey RD, Paroha S, Chatterjee S, Chatterjee T. Biomarkers: an emerging tool for diagnosis of a disease and drug development. Asian J Pharm Sci. 2011;1:9–16.

    Google Scholar 

  2. Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano. 2010;4:1949–54.

    Article  CAS  Google Scholar 

  3. Jaffe AS, Babuin L, Apple FS. Biomarkers in acute cardiac disease: the present and the future. J Am Coll Cardiol. 2006;48:1–11.

    Article  CAS  Google Scholar 

  4. Masson J-F, Battaglia TM, Khairallah P, Beaudoin S, Booksh KS. Quantitative measurement of cardiac markers in undiluted serum. Anal Chem. 2007;79:612–9.

    Article  CAS  Google Scholar 

  5. Jiang DE, Sumpter BG, Dai S. How do aryl groups attach to a graphene sheet? J Phys Chem B. 2006;110:23628–32.

    Article  CAS  Google Scholar 

  6. Altintas Z, Fakanya WM, Tothill IE. Cardiovascular disease detection using bio-sensing techniques. Talanta. 2014;128:177–86.

    Article  CAS  Google Scholar 

  7. Sarangadharan I, Wang S-L, Sukesan R, Chen P-C, Dai T-Y, Pulikkathodi AK, Hsu C-P, Chiang H-HK, Liu LY-M, WangY-L. Single drop whole blood diagnostics: portable biomedical sensor for cardiac troponin I detection. Anal Chem. 2018;90:2867–74.

    Article  CAS  Google Scholar 

  8. Hamm CW, Goldmann BU, Heeschen C, Kreymann G, Berger J, Meinertz T. Emergency room triage of patients with acute chest pain by means of rapid testing for cardiac troponin T or troponin I. New Engl J Med. 1997;337:1648–53.

    Article  CAS  Google Scholar 

  9. Upasham S, Tanak A, Prasad S. Cardiac troponin biosensors: where are we now. Adv Heal Care Technol. 2018;4:1–13.

    Article  Google Scholar 

  10. Lee T, Lee Y, Park SY, Hong K, Kim Y, Park C, Chung Y-H, Lee M-H, Min J. Fabrication of electrochemical biosensor composed of multi-functional DNA structure/au nanospike on micro-gap/PCB system for detecting troponin I in human serum. Colloids Surf B. 2019;175:343–50.

    Article  CAS  Google Scholar 

  11. Gomes-Filho S, Dias A, Silva M, Silva B, Dutra R. A carbon nanotube-based electrochemical immunosensor for cardiac troponin T. Microchem. 2013;109:10–5.

    Article  CAS  Google Scholar 

  12. Chekin F, Vasilescu A, Jijie R, Singh SK, Kurungot S, Iancu M, Badea G, Boukherroub R, Szunerits S. Sensitive electrochemical detection of cardiac troponin I in serum and saliva by nitrogen-doped porous reduced graphene oxide electrode, Sens. Actuators, B., 187. 2018;262:180.

  13. Casas-Solvas JM, Vargas-Berenguel A, Capitán-Vallvey LF, Santoyo-González F. Convenient methods for the synthesis of ferrocene− carbohydrate conjugates. Org Lett. 2004;6:3687–90.

    Article  CAS  Google Scholar 

  14. Leroux YR, Hapiot P. Nanostructured monolayers on carbon substrates prepared by electrografting of protected aryldiazonium salts. Chem Mater. 2013;25:489–95.

    Article  CAS  Google Scholar 

  15. Mishyn V, Rodrigues T, Leroux Y, Aspermair P, Happy H, Bintinger J, Kleber C, Boukherroub R, Knoll W, Szunerits S. Controlled covalent functionalization of graphene-channel of a field effect transistor as ideal platform for (bio) sensing applications. Nanoscale Horiz. https://doi.org/10.1039/D1NH00355K(2021).

  16. Chidsey CE, Bertozzi CR, Putvinski T, Mujsce A. Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: electroactive self-assembled monolayers. J Am Chem Soc. 1990;112:4301–6.

    Article  CAS  Google Scholar 

  17. Gao N, Gao T, Yang X, Dai X, Zhou W, Zhang A, Lieber CM. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proc Natl Acad Sci U S A. 2016;113:14633–8.

    Article  CAS  Google Scholar 

  18. Jo H, Gu H, Jeon W, Youn H, Her J, Kim S-K, Lee J, Shin JH, Ban C. Electrochemical aptasensor of cardiac troponin I for the early diagnosis of acute myocardial infarction. Anal Chem. 2015;87:9869–75.

    Article  CAS  Google Scholar 

  19. Lang M, Luo D, Yang G, Mei Q, Feng G, Yang Y, Liu Z, Chen Q, Wu L. An ultrasensitive electrochemical sensing platform for the detection of cTnI based on aptamer recognition and signal amplification assisted by TdT. RSC Adv. 2020;10:36396–403.

    Article  CAS  Google Scholar 

  20. Jo H, Her J, Lee H, Shim Y-B, Ban C. Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes. Talanta. 2017;165:442–8.

    Article  CAS  Google Scholar 

  21. Qiao X, Li K, Xu J, Cheng N, Sheng Q, Cao W, Yue T, Zheng J. Novel electrochemical sensing platform for ultrasensitive detection of cardiac troponin I based on aptamer-MoS2 nanoconjugates. Biosens Bioelectron. 2018;113:142–7.

    Article  CAS  Google Scholar 

  22. Sun D, LuoZ LJ, Zhang S, Che T, Chen Z, Zhang L. Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin I by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure. Biosens Bioelectron. 2019;134:49–56.

    Article  CAS  Google Scholar 

  23. Negahdary M, Behjati-Ardakani M, Sattarahmady N, Yadegari H, Heli H. Electrochemical aptasensing of human cardiac troponin I based on an array of gold nanodumbbells-applied to early detection of myocardial infarction, Sens. Actuators, B. 2017;252:62–71.

    Article  CAS  Google Scholar 

  24. Grabowska I, Sharma N, Vasilescu A, Iancu M, Badea G, Boukherroub R, Ogale S, Szunerits S. Electrochemical aptamer-based biosensors for the detection of cardiac biomarkers. ACS omega. 2018;3:12010–8.

    Article  CAS  Google Scholar 

  25. Lee WC, Lee H, Lim J, Park YJ. An effective electrical sensing scheme using AC electrothermal flow on a biosensor platform based on a carbon nanotube network. Appl Phys Lett. 2016;109:223701.

    Article  Google Scholar 

  26. Kutovyi Y, Li J, Zadorozhnyi I, Hlukhova H, Boichuk N, Yehorov D, Menger M, Vitusevich S. Highly sensitive and fast detection of C-reactive protein and troponin biomarkers using liquid-gated single silicon nanowire biosensors. MRS Adv. 2020;5:835–46.

    Article  CAS  Google Scholar 

  27. Sarangadharan I, Regmi A, Chen Y-W, Hsu C-P, Chen P-C, Chang W-H, Lee G-Y, Chyi J-I, Shiesh S-C, Lee G-B. High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN high Electron mobility transistor (HEMT) biosensors. Biosens Bioelectron. 2018;100:282–9.

    Article  CAS  Google Scholar 

  28. Sinha A, Tai T-Y, Li K-H, Gopinathan P, Chung Y-D, Sarangadharan I, Ma H-P, Huang P-C, Shiesh S-C, Wang Y-L. An integrated microfluidic system with field-effect-transistor sensor arrays for detecting multiple cardiovascular biomarkers from clinical samples. Biosens Bioelectron. 2019;129:155–63.

    Article  CAS  Google Scholar 

  29. Nakatsuka N, Yang K-A, Abendroth JM, Cheung KM, Xu X, Yang H, Zhao C, Zhu B, Rim YS, Yang Y. Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science. 2018;362:319–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Centre National de la Recherche Scientifique (CNRS), the University of Lille, the Hauts-de-France region and the CPER “Photonics for Society” is gratefully acknowledged. Financial support came further from the FFG, Austria, within the Comet program.

Conflict of interest

The authors declare no competing interests.

S. Szunerits is editor of Analytical and Bioanalytical Chemistry but was not involved in the peer review of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladyslav Mishyn, Teresa Rodrigues or Sabine Szunerits.

Additional information

Published in the topical collection featuring Promising Early-Career(Bio)Analytical Researchers with guest editors Antje J. Baeumner, María C. Moreno-Bondi, Sabine Szunerits, and Qiuquan Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishyn, V., Rodrigues, T., Leroux, Y.R. et al. Electrochemical and electronic detection of biomarkers in serum: a systematic comparison using aptamer-functionalized surfaces. Anal Bioanal Chem 414, 5319–5327 (2022). https://doi.org/10.1007/s00216-021-03658-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03658-0

Keywords

Navigation