Skip to main content
Log in

Amino acid–functionalized carbon quantum dots for selective detection of Al3+ ions and fluorescence imaging in living cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Carbon quantum dots (CQDs) are drawing tremendous attention due to their unique photoluminescence property and fascinating functions. Herein, we prepared novel CQDs functionalized with amino acids (AA-CQDs) by a one-pot hydrothermal method for selective detection of Al3+ ions and fluorescence imaging. The prepared AA-CQDs exhibit a novel triple-excitation and single-colour emission for fluorescent property. In addition, the AA-CQDs have a high absolute quantum yield (24.23%) and quantum lifetime (13.29 ns). Moreover, the AA-CQDs exhibit high selectivity and sensitivity for Al3+ by fluorescence enhancement. In pH 7.4 PBS solution, there was a good linear relation between the fluorescence intensity and the concentration of Al3+ in the range of 1–20 μmol L−1; the limit of detection (3σ) was only 0.32 μmol L−1. Furthermore, an AA-CQD probe was also utilized for detection of Al3+ in living cells based on excellent biocompatibility and endocytosis. Based on the concentration of Al3+ ions in cells and apoptosis data, there will be a quick reflect of apoptosis induced by aluminium ions via the fluorescence intensity of the AA-CQD probe. This work will set the stage for developing novel CQD-based biosensors in cell research.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Han GM, Zhao J, Zhang RL, Tian XH, Liu ZJ, Wang AD, et al. Membrane-penetrating carbon quantum dots for imaging nucleic acid structures in live organisms. Angew Chem. 2019;5(21):7087–91.

    Google Scholar 

  2. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015;11(14):1620–36.

    Article  CAS  PubMed  Google Scholar 

  3. Chen WF, Li DJ, Tian L, Xiang W, Wang TY, Hu WM, et al. Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green Chem. 2018;40(19):4438–42.

    Article  Google Scholar 

  4. Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chem Soc Rev. 2015;44(1):362–81.

    Article  CAS  PubMed  Google Scholar 

  5. Jiji RD, Cooper GA, Booksh KS. Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic aromatic hydrocarbons. Anal Chim Acta. 1999;397:61–72.

    Article  CAS  Google Scholar 

  6. Bortolato SA, Arancibia JA, Escandar GM. Non-trilinear chromatographic time retention−fluorescence emission data coupled to chemometric algorithms for the simultaneous determination of 10 polycyclic aromatic hydrocarbons in the presence of interferences. Anal Chem. 2009;81(19):8074–84.

    Article  CAS  PubMed  Google Scholar 

  7. Zhu ZJ, Zhai YL, Li ZH, Zhu PY, Mao S, Zhu CZ, et al. Red carbon dots: optical property regulations and applications. Mater Today. 2019;30:52–79.

    Article  CAS  Google Scholar 

  8. Liang Q, Shi Y, Li Z, Yang XM. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon. 2013;60:421–8.

    Article  CAS  Google Scholar 

  9. Liu J, Geng Y, Li D, Yang B. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum. Adv Mater. 2020;32(17):1906641.

    Article  CAS  Google Scholar 

  10. Yan C, Hu X, Guan P, et al. Highly biocompatible graphene quantum dots: green synthesis, toxicity comparison and fluorescence imaging. J Mater Sci. 2020;55(3):1198–215.

    Article  CAS  Google Scholar 

  11. Wang M, Yin H, Zhou Y. A novel photoelectrochemical biosensor for the sensitive detection of dual micrornas using molybdenum carbide nanotubes as nanocarriers and energy transfer between CQDs and AuNPs. Chem Eng J. 2019;369:351–7.

    Article  Google Scholar 

  12. Liu T, Dong JX, Liu SG, Li N, Li NB. Carbon quantum dots prepared with polyethyleneimine as both reducing agent and stabilizer for synthesis of Ag/CQDs composite for Hg2+ ions detection. J Hazard Mater. 2017;322(Pt B):430–6.

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Chen P, Xia F, Liu Z, Zhou C. Sensitive electrochemiluminescence aptasensor for chlorpyrifos detection based on resonance energy transfer between MoS2/CdS nanospheres and Ag/CQDs. Sensors Actuators B Chem. 2020;315:128098.

    Article  CAS  Google Scholar 

  14. Singha P, Vat BG, Jha SK, Neogy S. Green, water-dispersible photoluminescent on–off–on probe for selective detection of fluoride ions. ACS Appl Mater Interfaces. 2017;9(24):20536–44.

    Article  Google Scholar 

  15. Fan Q, Li J, Zhu Y, Yang Z, Wang X. Functional carbon quantum dots towards highly sensitive graphene transistors for Cu2+ ion detection. ACS Appl Mater Interfaces. 2020;12(4):4797–803.

    Article  CAS  PubMed  Google Scholar 

  16. Yan C, Wang C, Hou T, Guan P, Wu H. Lasting tracking and rapid discrimination of live gram-positive bacteria by peptidoglycan-targeting carbon quantum dots. ACS Appl Mater Interfaces. 2021;13(1):1277–87.

    Article  CAS  PubMed  Google Scholar 

  17. Yue J, Li L, Cao L, Zan M, Dong WF. Two-step hydrothermal preparation of carbon dots for calcium ion detection. ACS Appl Mater Interfaces. 2019;11(47):44566–72.

    Article  CAS  PubMed  Google Scholar 

  18. Tripathi KM, Tran TS, Kim YJ. Green fluorescent onion-like carbon nanoparticles from flaxseed oil for visible light induced photocatalytic applications and label-free detection of Al(III) ions. ACS Sustain Chem Eng. 2017;5(5):3982–92.

    Article  CAS  Google Scholar 

  19. Fang BY, Li C, Song YY. Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells. Biosens Bioelectron. 2017;100:41–8.

    Article  PubMed  Google Scholar 

  20. Cassella RJ, Magalhaes OIB, Couto MT, Lima ELS, Neves MAFS, Coutinho FMB. Synthesis and application of a functionalized resin for flow injection/FAAS copper determination in waters. Talanta. 2005;67(1):121–8.

    Article  CAS  PubMed  Google Scholar 

  21. Frankowski M, Zioła-Frankowska A, Siepak J. Speciation of aluminium fluoride complexes and Al3+ in soils from the vicinity of an aluminium smelter plant by hyphenated high performance ion chromatography flame atomic absorption spectrometry technique. Microchem J. 2010;95(2):366–72.

    Article  CAS  Google Scholar 

  22. Park SH, Kwon N, Lee JH, Yoon J, Shin I. Synthetic ratiometric fluorescent probes for detection of ions. Chem Soc Rev. 2020;49(1):143–79.

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Fan J, Peng X. Colourimetric and fluorescent probes for the optical detection of palladium ions. Chem Soc Rev. 2013;42(19):7943–62.

    Article  CAS  PubMed  Google Scholar 

  24. Prabhu AJ, et al. Pyrene-phenylglycinol linked reversible ratiometric fluorescent chemosensor for the detection of aluminium in nanomolar range and its bio-imaging. Anal Chim Acta. 2019;1090:114–24.

    Article  CAS  PubMed  Google Scholar 

  25. Chen P, et al. Thiol inhibition of Hg cold vapor generation in SnCl2/NaBH4 system: a homogeneous bioassay for H2O2/glucose and butyrylcholinesterase/pesticide sensing by atomic spectrometry. Anal Chim Acta. 2020;1111:8–15.

    Article  CAS  PubMed  Google Scholar 

  26. Liu D, Wang Z, Jiang X. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale. 2011;3(4):1421–33.

    Article  CAS  PubMed  Google Scholar 

  27. Hassan M, Gomes VG, Dehghani A, Ardekani SM. Engineering carbon quantum dots for photomediated theranostics. Nano Res 2017;11(1):1–41.

  28. Zhang R, Chen W. Nitrogen-doped carbon quantum dots: facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens Bioelectron. 2014;55:83–90.

    Article  CAS  PubMed  Google Scholar 

  29. Shu P, Liu S. Dual-emission carbon dots for ratiometric detection of Fe3+ ions and acid phosphatase. Anal Chim Acta. 2020;1105:155–61.

    Article  Google Scholar 

  30. Qi HJ, Teng M, Liu M, Liu SX, Li J, Yu HP, et al. Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. J Colloid Interface Sci. 2019;39:332–41.

    Article  Google Scholar 

  31. Xie ZH, Sun XF, Jiao JM, Xin X. Ionic liquid-functionalized carbon quantum dots as fluorescent probes for sensitive and selective detection of iron ion and ascorbic acid. Colloids Surf A Physicochem Eng Asp. 2017;529:38–44.

    Article  CAS  Google Scholar 

  32. Li HY, Xu Y, Zhao L, Ding J, Chen MY, Chen GR, et al. Synthesis of tiny carbon dots with high quantum yield using multi-walled carbon nanotubes as support for selective “turn-off-on” detection of rutin and Al3+. Carbon. 2019;143:391–401.

    Article  CAS  Google Scholar 

  33. Xia C, Cao MM, Xia JF, Jiang DY, Zhou GH, Yu CY, et al. Preparation of tunable full-color emission carbon dots and their optical applications in ions detection and bio-imaging. J Am Ceram Soc. 2020;103(8):4507–16.

    Article  CAS  Google Scholar 

  34. Yan FY, Jiang YX, Sun XD, Wei JF, Chen L, Zhang YY. Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Res. 2020;13(1):52–60.

    Article  CAS  Google Scholar 

  35. Emam HE, Ahmed HB. Antitumor/antiviral carbon quantum dots based on carrageenan and pullulan. Int J Biol Macromol. 2020;170:688–700.

    Article  PubMed  Google Scholar 

  36. Jiang K, Gao X, Feng X, et al. Carbon dots with dual-emissive, robust and aggregation-induced room temperature phosphorescence characteristics. Angew Chem Int Ed. 2019;59(3):1263–9.

    Article  Google Scholar 

  37. Ge M, Huang X, Ni J, Han Y, et al. One-step synthesis of self-quenching-resistant biomass-based solid-state fluorescent carbon dots with high yield for white lighting emitting diodes. Dyes Pigments. 2021;185:108953.

    Article  CAS  Google Scholar 

  38. Han Z, Ni Y, Ren J, et al. Highly efficient and ultra-narrow bandwidth orange emissive carbon dots for microcavity lasers. Nanoscale. 2019;11(24):11577–83.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Ge G, Gao J, Li Z, et al. Multicenter-emitting carbon dots: color tunable fluorescence and dynamics monitoring oxidative stress in vivo. Chem Mater. 2020;32(19):8146–57.

    Article  CAS  Google Scholar 

  40. Bai LH, Yan HX, Feng YB, Feng WX, Yuan LY. Multi-excitation and single color emission carbon dots doped with silicon and nitrogen: synthesis, emission mechanism, Fe3+ probe and cell imaging. Chem Eng J. 2019;373:963–72.

    Article  CAS  Google Scholar 

  41. Ahmad S, Wan N, Ismail AF, Yusof N, Aziz F. Adsorptive removal of heavy metal ions using graphene-based nanomaterials: toxicity, roles of functional groups and mechanisms. Chemosphere. 2020;248:126008.

    Article  CAS  PubMed  Google Scholar 

  42. Jal PK, Patel S, Mishra BK. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta. 2004;62(5):1005–28.

    Article  CAS  PubMed  Google Scholar 

  43. Caicedo M, Jacobs JJ, Reddy A, James N. Hallab Analysis of metal ion-induced DNA damage, apoptosis, and necrosis in human (Jurkat) T-cells demonstrates Ni2+ and V3+ are more toxic than other metals: Al3+, Be2+, Co2+, Cr3+, Cu2+, Fe3+, Mo5+, Nb5+, Zr2+. J Biomed Mater Res Part A. 2008;86(4):905–13.

    Article  Google Scholar 

  44. Qu SH, Sun FY, Qiao ZH, Li JM, Shang L. In situ investigation on the protein corona formation of quantum dots by using fluorescence resonance energy transfer. Small. 2020;16(21):1907633.

    Article  CAS  Google Scholar 

  45. Yan C, Zhang N, Guan P, et al. Drug-based magnetic imprinted nanoparticles: enhanced lysozyme amyloid fibrils cleansing and anti-amyloid fibrils toxicity. Int J Biol Macromol. 2020;153:723–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Analytical and Testing Centre of Northwestern Polytechnical University for equipment supporting.

Funding

This work was supported financially by the National Natural Science Foundation of China (Grant No. 51433008, 81571786, 31771087), Shaanxi Innovation Capability Support Plan (2020TD-041), Shaanxi Key Research & Development Program Foundation (2020GY-285) and Shaanxi Natural Science Foundation (2021JM-238).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaoren Yan, Xiaoling Hu or Chaoli Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 1.71 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Guo, L., Shao, X. et al. Amino acid–functionalized carbon quantum dots for selective detection of Al3+ ions and fluorescence imaging in living cells. Anal Bioanal Chem 413, 3965–3974 (2021). https://doi.org/10.1007/s00216-021-03348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03348-x

Keywords

Navigation