Skip to main content
Log in

Three-dimensional (3D) imaging of lipids in skin tissues with infrared matrix-assisted laser desorption electrospray ionization (MALDESI) mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) mass spectrometry imaging (MSI) has become a growing frontier as it has the potential to provide a 3D representation of analytes in a label-free, untargeted, and chemically specific manner. The most common 3D MSI is accomplished by the reconstruction of 2D MSI from serial cryosections; however, this presents significant challenges in image alignment and registration. An alternative method would be to sequentially image a sample by consecutive ablation events to create a 3D image. In this study, we describe the use of infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) in ablation-based 3D MSI for analyses of lipids within fresh frozen skin tissue. Depth resolution using different laser energy levels was explored with a confocal laser scanning microscope to establish the imaging parameters for skin. The lowest and highest laser energy level resulted in a depth resolution of 7 μm and 18 μm, respectively. A total of 594 lipids were putatively detected and detailed lipid profiles across different skin layers were revealed in a 56-layer 3D imaging experiment. Correlated with histological information, the skin structure was characterized with differential lipid distributions with a lateral resolution of 50 μm and a z resolution of 7 μm.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Seeley EH, Caprioli RM. 3D imaging by mass spectrometry: a new frontier. Anal Chem. 2012;84:2105–10. https://doi.org/10.1021/ac2032707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Giordano S, Morosi L, Veglianese P, Licandro SA, Frapolli R, Zucchetti M, et al. 3D mass spectrometry imaging reveals a very heterogeneous drug distribution in tumors. Sci Rep. 2016;6:1–8. https://doi.org/10.1038/srep37027.

    Article  CAS  Google Scholar 

  3. Scott AJ, Chandler CE, Ellis SR, Heeren RMA, Ernst RK. Maintenance of deep lung architecture and automated airway segmentation for 3D mass spectrometry imaging. Sci Rep. 2019;9:1–13. https://doi.org/10.1038/s41598-019-56364-4.

    Article  CAS  Google Scholar 

  4. Chen R, Hui L, Sturm RM, Li L. Three dimensional mapping of neuropeptides and lipids in crustacean brain by mass spectral imaging. J Am Soc Mass Spectrom. 2009;20:1068–77. https://doi.org/10.1016/j.jasms.2009.01.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patterson NH, Doonan RJ, Daskalopoulou SS, Dufresne M, Lenglet S, Montecucco F, et al. Three-dimensional imaging MS of lipids in atherosclerotic plaques: open-source methods for reconstruction and analysis. Proteomics. 2016;16:1642–51. https://doi.org/10.1002/pmic.201500490.

    Article  CAS  PubMed  Google Scholar 

  6. Watrous JD, Phelan VV, Hsu CC, Moree WJ, Duggan BM, Alexandrov T, et al. Microbial metabolic exchange in 3D. ISME J. 2013;7:770–80. https://doi.org/10.1038/ismej.2012.155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crecelius AC, Cornett DS, Caprioli RM, Williams B, Dawant BM, Bodenheimer B. Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J Am Soc Mass Spectrom. 2005;16:1093–9. https://doi.org/10.1016/j.jasms.2005.02.026.

    Article  CAS  PubMed  Google Scholar 

  8. Lanekoff I, Burnum-Johnson K, Thomas M, Cha J, Dey SK, Yang P, et al. Three-dimensional imaging of lipids and metabolites in tissues by nanospray desorption electrospray ionization mass spectrometry. Anal Bioanal Chem. 2015;407:2063–71. https://doi.org/10.1007/s00216-014-8174-0.

    Article  CAS  PubMed  Google Scholar 

  9. Fincher JA, Jones DR, Korte AR, Dyer JE, Parlanti P, Popratiloff A, et al. Mass spectrometry imaging of lipids in human skin disease model hidradenitis suppurativa by laser desorption ionization from silicon nanopost arrays. Sci Rep. 2019;9:1–11. https://doi.org/10.1038/s41598-019-53938-0.

    Article  Google Scholar 

  10. Abdelmoula WM, Pezzotti N, Hölt T, Dijkstra J, Vilanova A, McDonnell LA, et al. Interactive visual exploration of 3D mass spectrometry imaging data using hierarchical stochastic neighbor embedding reveals spatiomolecular structures at full data resolution. J Proteome Res. 2018;17:1054–64. https://doi.org/10.1021/acs.jproteome.7b00725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dreisewerd K. Recent methodological advances in MALDI mass spectrometry. Anal Bioanal Chem. 2014;406:2261–78. https://doi.org/10.1007/s00216-014-7646-6.

    Article  CAS  PubMed  Google Scholar 

  12. Palmer AD, Alexandrov T. Serial 3D imaging mass spectrometry at its tipping point. Anal Chem. 2015;87:4055–62. https://doi.org/10.1021/ac504604g.

    Article  CAS  PubMed  Google Scholar 

  13. Nemes P, Barton AA, Vertes A. Three-dimensional imaging of metabolites in tissues under ambient conditions by laser ablation electrospray ionization mass spectrometry. Anal Chem. 2009;81:6668–75. https://doi.org/10.1021/ac900745e.

    Article  CAS  PubMed  Google Scholar 

  14. Wucher A, Cheng J, Zheng L, Winograd N. Three-dimensional depth profiling of molecular structures. Anal Bioanal Chem. 2009;393:1835–42. https://doi.org/10.1007/s00216-008-2596-5.

    Article  CAS  PubMed  Google Scholar 

  15. Fletcher JS, Rabbani S, Henderson A, Lockyer NP, Vickerman JC. Three-dimensional mass spectral imaging of HeLa-M cells - sample preparation, data interpretation and visualisation. Rapid Commun Mass Spectrom. 2011;25:925–32. https://doi.org/10.1002/rcm.4944.

    Article  CAS  PubMed  Google Scholar 

  16. Passarelli MK, Newman CF, Marshall PS, West A, Gilmore IS, Bunch J, et al. Single-cell analysis: visualizing pharmaceutical and metabolite uptake in cells with label-free 3D mass spectrometry imaging. Anal Chem. 2015;87:6696–702. https://doi.org/10.1021/acs.analchem.5b00842.

    Article  CAS  PubMed  Google Scholar 

  17. WANG JD, SONG JF, Li C, Dai XH, Fang X, Gong XY, et al. Recent advances in single cell analysis methods based on mass spectrometry. Chin J Anal Chem. 2020;48:969–80. https://doi.org/10.1016/S1872-2040(20)60038-X.

    Article  Google Scholar 

  18. Gilmore IS. SIMS of organics—advances in 2D and 3D imaging and future outlook. J Vac Sci Technol A Vacuum, Surfaces, Film. 2013;31:050819. https://doi.org/10.1116/1.4816935.

    Article  CAS  Google Scholar 

  19. Bai H, Khodjaniyazova S, Garrard KP, Muddiman DC. Three-dimensional imaging with infrared matrix-assisted laser desorption electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2020;31:292–7. https://doi.org/10.1021/jasms.9b00066.

    Article  CAS  PubMed  Google Scholar 

  20. Nazari M, Bokhart MT, Loziuk PL, Muddiman DC. Quantitative mass spectrometry imaging of glutathione in healthy and cancerous hen ovarian tissue sections by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Analyst. 2018;143:654–61. https://doi.org/10.1039/c7an01828b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pace CL, Horman B, Patisaul H, Muddiman DC. Analysis of neurotransmitters in rat placenta exposed to flame retardants using IR-MALDESI mass spectrometry imaging. Anal Bioanal Chem. 2020;412:3745–52. https://doi.org/10.1007/s00216-020-02626-4.

    Article  CAS  PubMed  Google Scholar 

  22. Barry JA, Robichaud G, Bokhart MT, Thompson C, Sykes C, Kashuba ADM, et al. Mapping antiretroviral drugs in tissue by IR-MALDESI MSI coupled to the Q Exactive and comparison with LC-MS/MS SRM assay. J Am Soc Mass Spectrom. 2014;25:2038–47. https://doi.org/10.1007/s13361-014-0884-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bagley MC, Ekelöf M, Rock K, Patisaul H, Muddiman DC. IR-MALDESI mass spectrometry imaging of underivatized neurotransmitters in brain tissue of rats exposed to tetrabromobisphenol A. Anal Bioanal Chem. 2018;410:7979–86. https://doi.org/10.1007/s00216-018-1420-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fideler J, Johanningsmeier SD, Ekelöf M, Muddiman DC. Discovery and quantification of bioactive peptides in fermented cucumber by direct analysis IR-MALDESI mass spectrometry and LC-QQQ-MS. Food Chem. 2019;271:715–23. https://doi.org/10.1016/j.foodchem.2018.07.187.

    Article  CAS  PubMed  Google Scholar 

  25. Stutts WL, Knuth MM, Ekelöf M, Mahapatra D, Kullman SW, Muddiman DC. Methods for cryosectioning and mass spectrometry imaging of whole-body zebrafish. J Am Soc Mass Spectrom. 2020;31:768–72. https://doi.org/10.1021/jasms.9b00097.

    Article  CAS  PubMed  Google Scholar 

  26. Pappas A. Epidermal surface lipids. Dermatoendocrinol. 2009;1:72–6. https://doi.org/10.4161/derm.1.2.7811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garidel P, Fölting B, Schaller I, Kerth A. The microstructure of the stratum corneum lipid barrier: mid-infrared spectroscopic studies of hydrated ceramide:palmitic acid:cholesterol model systems. Biophys Chem. 2010;150:144–56. https://doi.org/10.1016/j.bpc.2010.03.008.

    Article  CAS  PubMed  Google Scholar 

  28. Castellanos A, Hernandez MG, Tomic-Canic M, Jozic I, Fernandez-Lima F. Multimodal, in situ imaging of ex vivo human skin reveals decrease of cholesterol sulfate in the neoepithelium during acute wound healing. Anal Chem. 2020;92:1386–94. https://doi.org/10.1021/acs.analchem.9b04542.

    Article  CAS  PubMed  Google Scholar 

  29. Hart PJ, Francese S, Claude E, Woodroofe MN, Clench MR. MALDI-MS imaging of lipids in ex vivo human skin. Anal Bioanal Chem. 2011;401:115–25. https://doi.org/10.1007/s00216-011-5090-4.

    Article  CAS  PubMed  Google Scholar 

  30. Sjövall P, Skedung L, Gregoire S, Biganska O, Clément F, Luengo GS. Imaging the distribution of skin lipids and topically applied compounds in human skin using mass spectrometry. Sci Rep. 2018;8:1–15. https://doi.org/10.1038/s41598-018-34286-x.

    Article  CAS  Google Scholar 

  31. Starr NJ, Abdul Hamid K, Wibawa J, Marlow I, Bell M, Pérez-García L, et al. Enhanced vitamin C skin permeation from supramolecular hydrogels, illustrated using in situ ToF-SIMS 3D chemical profiling. Int J Pharm. 2019;563:21–9. https://doi.org/10.1016/j.ijpharm.2019.03.028.

    Article  CAS  PubMed  Google Scholar 

  32. Malmberg P, Guttenberg T, Ericson MB, Hagvall L. Imaging mass spectrometry for novel insights into contact allergy – a proof-of-concept study on nickel. Contact Dermatitis. 2018;78:109–16. https://doi.org/10.1111/cod.12911.

    Article  CAS  PubMed  Google Scholar 

  33. Bokhart MT, Muddiman DC. Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging analysis of biospecimens. Analyst. 2016;141:5236–45. https://doi.org/10.1039/c6an01189f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schramm T, Hester A, Klinkert I, Both JP, Heeren RMA, Brunelle A, et al. ImzML - a common data format for the flexible exchange and processing of mass spectrometry imaging data. J Proteome. 2012;75:5106–10. https://doi.org/10.1016/j.jprot.2012.07.026.

    Article  CAS  Google Scholar 

  35. Robichaud G, Garrard KP, Barry JA, Muddiman DC. MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on matlab platform. J Am Soc Mass Spectrom. 2013;24:718–21. https://doi.org/10.1007/s13361-013-0607-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bokhart MT, Nazari M, Garrard KP, Muddiman DC. MSiReader v1.0: evolving open-source mass spectrometry imaging software for targeted and untargeted analyses. J Am Soc Mass Spectrom. 2018;29:8–16. https://doi.org/10.1007/s13361-017-1809-6.

    Article  CAS  PubMed  Google Scholar 

  37. Palmer A, Phapale P, Chernyavsky I, Lavigne R, Fay D, Tarasov A, et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat Methods. 2016;14:57–60. https://doi.org/10.1038/nmeth.4072.

    Article  CAS  PubMed  Google Scholar 

  38. Fahy E, Sud M, Cotter D, Subramaniam S. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 2007;35:606–12. https://doi.org/10.1093/nar/gkm324.

    Article  Google Scholar 

  39. De Macedo CS, Anderson DM, Pascarelli BM, Spraggins JM, Sarno EN, Schey KL, et al. MALDI imaging reveals lipid changes in the skin of leprosy patients before and after multidrug therapy (MDT). J Mass Spectrom. 2015;50:1374–85. https://doi.org/10.1002/jms.3708.

    Article  CAS  PubMed  Google Scholar 

  40. Margulis K, Chiou AS, Aasi SZ, Tibshirani RJ, Tang JY, Zare RN. Distinguishing malignant from benign microscopic skin lesions using desorption electrospray ionization mass spectrometry imaging. Proc Natl Acad Sci U S A. 2018;115:6347–52. https://doi.org/10.1073/pnas.1803733115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thieme M, Zillikens D, Sadik CD. Sphingosine-1-phosphate modulators in inflammatory skin diseases – lining up for clinical translation. Exp Dermatol. 2017;26:206–10. https://doi.org/10.1111/exd.13174.

    Article  CAS  PubMed  Google Scholar 

  42. Touboul D, Roy S, Germain DP, Chaminade P, Brunelle A, Laprévote O. MALDI-TOF and cluster-TOF-SIMS imaging of Fabry disease biomarkers. Int J Mass Spectrom. 2007;260:158–65. https://doi.org/10.1016/j.ijms.2006.09.027.

    Article  CAS  Google Scholar 

  43. Goto-Inoue N, Hayasaka T, Zaima N, Nakajima K, Holleran WM, Sano S, et al. Imaging mass spectrometry visualizes ceramides and the pathogenesis of Dorfman-Chanarin syndrome due to ceramide metabolic abnormality in the skin. PLoS One. 2012;7. https://doi.org/10.1371/journal.pone.0049519.

  44. Wei JCJ, Edwards GA, Martin DJ, Huang H, Crichton ML, Kendall MAF. Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: from mice, rats, rabbits, pigs to humans. Sci Rep. 2017;7:1–17. https://doi.org/10.1038/s41598-017-15830-7.

    Article  CAS  Google Scholar 

  45. de Macedo CS, Anderson DM, Schey KL. MALDI (matrix assisted laser desorption ionization) imaging mass spectrometry (IMS) of skin: aspects of sample preparation. Talanta. 2017;174:325–35. https://doi.org/10.1016/j.talanta.2017.06.018.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Rob Smart for providing the mice used in this study and Professor Erin S. Baker for thoughtful discussions and advice about lipids annotations. The authors gratefully acknowledge the financial support received from NIH (R01GM087964) and North Carolina State University. Research reported in this publication was supported in part by NIEHS under award number P30ES025128. This work was performed in part by the Molecular Education, Technology and Research Innovation Center (METRIC) at NC State University, which is supported by the State of North Carolina. Measurements using the confocal laser scanning microscope were performed at the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation (award number ECCS-1542015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Muddiman.

Ethics declarations

All animal husbandry, care, and experimentation was conducted per NIH guidelines and approved by the NCSU Institutional IACUC committee (17-102B).

Competing interests

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Mass Spectrometry Imaging 2.0 with guest editors Shane R. Ellis and Tiffany Porta Siegel.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 148 kb)

ESM 2

(PDF 606 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, H., Linder, K.E. & Muddiman, D.C. Three-dimensional (3D) imaging of lipids in skin tissues with infrared matrix-assisted laser desorption electrospray ionization (MALDESI) mass spectrometry. Anal Bioanal Chem 413, 2793–2801 (2021). https://doi.org/10.1007/s00216-020-03105-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03105-6

Keywords

Navigation