Skip to main content
Log in

Challenges and opportunities for on-line monitoring of chlorine-produced oxidants in seawater using portable membrane-introduction Fourier transform-ion cyclotron resonance mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The present study reports the first evaluation of a MIMS device equipped with a high-resolution Fourier transform-ion cyclotron resonance mass spectrometer (FT-ICR MS) for comprehensive speciation of chlorine-produced oxidants (CPO) in seawater. A total of 40 model compounds were studied: 4 inorganic haloamines (mono-, di-, and trichloramine and monobromamine), 22 organic N-haloamines, 12 N-haloamino acids, and 2 free oxidants (HOCl/ClO and HOBr/BrO). The main key factors influencing the analytes’ introduction and their detection were optimized. Under optimized conditions, the rise and fall times of the MIMS signal ranged from 8 to 79 min and from 7 to 73 min, respectively, depending on the compound. Free oxidants and N-haloamino acids, which are ionic or too polar at seawater pH, hardly crossed the membrane, and MIMS analysis was thus unsuitable. Nevertheless, better enrichment and therefore better sensitivity were achieved with organic N-haloamines than with inorganic haloamines. The observed detection limits ranged from tens of μM to sub-μM levels. Oxidant decomposition occurred inside the MIMS device, at a higher rate for N-bromamines than for chlorinated analogues.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kinani A, Kinani S, Richard B, Lorthioy M, Bouchonnet S. Formation and determination of organohalogen by-products in water – part I. Discussing the parameters influencing the formation of organohalogen by-products and the relevance of estimating their concentration using the AOX (adsorbable organic halide) method. Trends Anal Chem. 2016;85:273–80.

    CAS  Google Scholar 

  2. Sugam R, Helz GR. Speciation of chlorine produced oxidants in marine waters: theoretical aspects. Chesap Sci. 1977;18:113–5.

    CAS  Google Scholar 

  3. Taylor CJL. The effects of biological fouling control at coastal and estuarine power stations. Mar Pollut Bull. 2006;53:30–48.

    CAS  PubMed  Google Scholar 

  4. Heeb MB, Criquet J, Zimmermann-Steffens SG, von Gunten U. Oxidative treatment of bromide-containing waters: formation of bromine and its reactions with inorganic and organic compounds. Water Res. 2014;48:15–42.

    CAS  PubMed  Google Scholar 

  5. Deborde M, von Gunten U. Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanims: a critical review. Water Res. 2008;42:13–51.

    CAS  PubMed  Google Scholar 

  6. Courtot J, Péron A. Etude physicochimique de la chloration de l’eau de mer en présence d’azote ammoniacal. Nature et évolution des haloamines formées. EDF R&D report HE 337911 (1979).

    Google Scholar 

  7. Péron A, Courtot-Coupez J. Etude physicochimique de la chloration de l’eau de mer artificielle contenant de l’azote ammoniacal. Water Res. 1980;14:883–90.

    Google Scholar 

  8. Abarnou A. Aspects chimiques de la chloration de l’eau de mer. Nantes: Technical report of Institut Scientifique et Technique des Pêches Maritimes; 1981.

    Google Scholar 

  9. Haag WR, Lietzke MH. A kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. A Final Report, ORNL/TM-7942. Oak Ridge: Oak Ridge National Laboratory; 1981.

    Google Scholar 

  10. Johnson JD, Inman GW, Trofe TW. Cooling-water chlorination: the kinetics of chlorine, bromine, and ammonia in sea water. Springfield: National Technical Information Service; 1982.

    Google Scholar 

  11. Heeb MB, Kristiana I, Trogolo D, Arey JS, von Gunten U. Formation and reactivity of inorganic and organic chloramines and bromamines during oxidative water treatment. Water Res. 2017;110:91–101.

    CAS  PubMed  Google Scholar 

  12. How Z-T, Kristiana I, Busetti F, Linge KL, Joll CA. Organic chloramines in chlorine-based disinfected water systems: a critical review. J Environ Sci. 2017;58:2–18.

    CAS  Google Scholar 

  13. Na C, Olson TM. Relative reactivity of amino acids with chlorine in mixtures. Environ Sci Technol. 2007;41:3220–5.

    CAS  PubMed  Google Scholar 

  14. Lewis S, Mole N, Mascarenhas R, James H. Proposed environmental quality standards for bromine in fresh and marine waters. 1997.

    Google Scholar 

  15. Donnermair MM, Blatchley ER III. Disinfection efficacy of organic chloramines. Water Res. 2003;37:1557–70.

    CAS  PubMed  Google Scholar 

  16. Gottardi W, Lotz S, Nagl M. Superior bactericidal activity of N-bromine compounds compared to their N-chlorine analogues can be reversed under protein load. J Appl Microbiol. 2014;116:1427–37.

    CAS  PubMed  Google Scholar 

  17. Antelo JM, Arce F, Parajó M. Kinetic study of the decomposition of N-chloramines. J Phys Org Chem. 1996;9:447–54.

    CAS  Google Scholar 

  18. Cooper WJ, Jones AC, Whitehead RF, Zika RG. Sunlight-induced photochemical decay of oxidants in natural waters: implications in ballast water treatment. Environ Sci Technol. 2007;41:3728–33.

    CAS  PubMed  Google Scholar 

  19. Jafvert CT, Valentine RL. Reaction scheme for the chlorination of ammoniacal water. Environ Sci Technol. 1992;26:577–86.

    CAS  Google Scholar 

  20. Worley SD, Williams DE, Crawford RA. Halamine water disinfectants. Crit Rev Environ Control. 1988;18:133–75.

    CAS  Google Scholar 

  21. Isaac RA, Morris JC. Transfer of active chlorine from chloramine to nitrogenous organic compounds. Mechan Environ Sci Technol. 1985;19:810–4.

    CAS  Google Scholar 

  22. How Z-T, Linge KL, Busetti F, Joll CA. Organic chloramines in drinking water: an assessment of formation, stability, reactivity and risk. Water Res. 2016;93:65–73.

    CAS  PubMed  Google Scholar 

  23. Criquet J, Rodriguez EM, Allard S, Wellauer S, Salhi E, Joll CA, et al. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts – electrophilic aromatic substitution and oxidation. Water Res. 2015;85:476–86.

    CAS  PubMed  Google Scholar 

  24. Westerhoff P, Chao P, Mash H. Reactivity of natural organic matter with aqueous chlorine and bromine. Water Res. 2004;38:1502–13.

    CAS  PubMed  Google Scholar 

  25. Pope PG, Speitel GE Jr. Reactivity of bromine-substituted haloamines in forming haloacetic acids. ACS Symp Ser. 2008;995:182–97.

    CAS  Google Scholar 

  26. Simon V, Berne F, Gallard H. Chloramination and bromamination of amino acids In: Thompson, K.C., Gillespie, S., Goslan, E.H. (Eds.), Disinfection by-products in drinking water. The Royal Society of Chemistry, Cambridge, 2015, 70–80.

    Google Scholar 

  27. Hu J, Song H, Karanfil T. Comparative analysis of halonitromethane and trihalomethane formation and speciation in drinking water: the effects of disinfectants, pH, bromide, and nitrite. Environ Sci Technol. 2009;44:794–9.

    Google Scholar 

  28. Plewa MJ, Wagner ED. Quantitative comparative mammalian cell cytotoxicity and genotoxicity of selected classes of drinking water disinfection by-products. Denver: American Water Works Research Foundation; 2008.

    Google Scholar 

  29. Plewa MJ, Simmons JE, Richardson SD, Wagner ED. Mammalian cell ytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by-products. Environ Mol Mutagen. 2010;51:871–8.

    CAS  PubMed  Google Scholar 

  30. Richardson SD, Plewa MJ, Wagner ED, Schoeny R, DeMarini DM. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res. 2007;636:178–242.

    CAS  PubMed  Google Scholar 

  31. Yang Y, Komaki Y, Kimura SY, Hu HY, Wagner ED, Mariñas BJ, et al. Toxic impact of bromide and iodide on drinking water disinfected with chlorine or chloramines. Environ Sci Technol. 2014;48:12362–9.

    CAS  PubMed  Google Scholar 

  32. Kinani S, Richard B, Souissi Y, Bouchonnet S. Analysis of inorganic chloramines in water. Trends Anal Chem. 2012;33:55–67.

    CAS  Google Scholar 

  33. Sollo FW, Larson TE, McGurk FF. Colorimetric methods for bromine. Environ Sci Technol. 1971;5:240–6.

    CAS  Google Scholar 

  34. Kinani S, Layousse S, Richard B, Kinani A, Bouchonnet S, Thoma A, et al. Selective and trace determination of monochloramine in river water by chemical derivatization and liquid chromatography/tandem mass spectrometry analysis. Talanta. 2015;140:189–97.

    CAS  PubMed  Google Scholar 

  35. Shang C, Blatchley ER III. Differentiation and quantification of free chlorine and inorganic chloramines in aqueous solution by MIMS. Environ Sci Technol. 1999;33:2218–23.

    CAS  Google Scholar 

  36. Riter LS, Charles L, Turowski M, Cooks RG. External interface for trap-and release membrane introduction mass spectrometry applied to the detection of inorganic chloramines and chlorobenzenes in water. Rapid Commun Mass Spectrom. 2001;15:2290–5.

    CAS  PubMed  Google Scholar 

  37. Kotiaho T, Hayward MJ, Cooks RG. Direct determination of chlorination products of organic amines using membrane introduction mass spectrometry. Anal Chem. 1991;63:1794–801.

    CAS  Google Scholar 

  38. Lee W, Westerhoff P, Yang X, Shang C. Comparison of colorimetric and membrane introduction mass spectrometry techniques for chloramines analysis. Water Res. 2007;41:3097–102.

    CAS  PubMed  Google Scholar 

  39. Soltermann F, Widler T, Canonica S, von Gunten U. Comparison of a novel extraction-based colorimetric (ABTS) method with membrane introduction mass spectrometry (MIMS): trichloramine dynamics in pool water. Water Res. 2014;58:258–68.

    CAS  PubMed  Google Scholar 

  40. Allard S, Hu W, Le Menn J-B, Cadee K, Gallard H, Croue J-P. Method development for quantification of bromochloramine using membrane introduction mass spectrometry. Environ Sci Technol. 2018;52:7805–12.

    CAS  PubMed  Google Scholar 

  41. Roumiguières A, Kinani S, Bouchonnet S. Tracking monochloramine decomposition in MIMS analysis. Sensors. 2020;20:247–58.

    Google Scholar 

  42. Louarn E, Asri-Idlibi AM, Leprovost J, Héninger M, Mestdagh H. Evidence of reactivity in the membrane for the unstable monochloramine during MIMS analysis. Sensors. 2018;18:1–12.

    Google Scholar 

  43. EN ISO 7393-2, 2018.Water quality - Determination of free chlorine and total chlorine - part 2: colorimetric method using N,N-dialkyl-1,4-phenylenediamine, for routine control purposes.

    Google Scholar 

  44. Schreiber LM, Mitch WA. Influence of the order of reagent addition on NDMA formation during chloramination. Environ Sci Technol. 2005;39:3811–8.

    CAS  PubMed  Google Scholar 

  45. Lei H, Mariñas BJ, Minear RA. Bromamine decomposition kinetics in aqueous solutions. Environ Sci Technol. 2004;38:2111–9.

    CAS  PubMed  Google Scholar 

  46. Louarn E, Hamrouni A, Colbeau-Justin C, Bruschi L, Lemaire J, Heninger M, et al. Characterization of a membrane inlet interfaced with a compact chemical ionization FT-ICR for real-time and quantitative VOC analysis in water. Int J Mass Spectrom. 2013;353:26–35.

    CAS  Google Scholar 

  47. Lemaire J, Thomas S, Lopes A, Louarn E, Mestdagh H, Latappy H, et al. Compact FTICR mass spectrometry for real time monitoring of volatile organic compounds. Sensors. 2018;18:1415–29.

    Google Scholar 

  48. Sacher F, Gerstner P, Merklinger M, Thoma A, Kinani A, Roumiguières A, et al. Determination of monochloramine dissipation kinetics in various surface water qualities under relevant environmental conditions - consequences regarding environmental risk assessment. Sci Total Environ. 2019;685:542–54.

    CAS  PubMed  Google Scholar 

  49. Johnson RC, Cooks RG, Allen TM, Cisper ME, Hemberger PH. Membrane introduction mass spectrometry: trends and applications. Mass Spectrom Rev. 2000;19:1–37.

    CAS  PubMed  Google Scholar 

  50. She M, Hwang S-T. Concentration of dilute flavor compounds by pervaporation: permeate pressure effect and boundary layer resistance modeling. J Membr Sci. 2004;236:193–202.

    CAS  Google Scholar 

  51. Hunter EPL, Lias SG. Evaluated gas phase basicities and proton affinities of molecules: an update. J Phys Chem Ref Data. 1998;27:413–656.

    CAS  Google Scholar 

  52. La Pack MA, Tou JC, Enke CG. Membrane mass spectrometry for the direct trace analysis of volatile organic compounds in air and water. Anal Chem. 1990;62:1265–71.

    Google Scholar 

  53. Bier M, Cooks RG. Membrane interface for selective introduction of volatile compounds directly into the ionization chamber of a mass spectrometer. Anal Chem. 1987;59:597–601.

    CAS  Google Scholar 

  54. Bier M, Kotiaho T, Cooks RG. Direct insertion membrane probe for selective introduction of organic compounds into a mass spectrometer. Anal Chim Acta. 1990;231:175–90.

    CAS  Google Scholar 

  55. Protashchuk SI, Kirichenko OS, Zorin YZ. Proton affinity of halogenoamines. A theoretical study. Mendeleev Commun. 1991;1:41–2.

    Google Scholar 

  56. Pepi F, Ricci A, Rosi M. Gas-phase chemistry of NHxCly+ ions. 3. Structure, stability, and reactivity of protonated trichloramine. J Phys Chem A. 2003;107:2085–92.

    CAS  Google Scholar 

  57. Heninger M, Mestdagh H, Louarn E, Mauclaire G, Boissel P, Leprovost J, et al. Gas analysis by electron ionization combined with chemical ionization in a compact FT-ICR mass spectrometer. Anal Chem. 2018;90:7517–25.

    CAS  PubMed  Google Scholar 

  58. Blake RS, Monks PS, Ellis AM. Proton-transfer reaction mass spectrometry. Chem Rev. 2009;109:861–96.

    CAS  PubMed  Google Scholar 

  59. Španěl P, Smith D. Selected ion flow tubes studies of the reactions of H3O+, NO+, and O2+ with several amines and some other nitrogen-containing molecules. Int J Mass Spectrom. 1998;176:203–11.

    Google Scholar 

  60. Pope PG. Haloacetic acid formation during chloramination: role of environmental conditions, kinetics, and haloamine chemistry. Ph.D. Dissertation. Texas: The University of Texas, Austin; 2006.

    Google Scholar 

  61. Li J, Blatchley ER III. Volatile disinfection byproduct formation resulting from chlorination of organic-nitrogen precursors in swimming pools. Environ Sci Technol. 2007;41:6732–9.

    CAS  PubMed  Google Scholar 

  62. Yang X, Shang C. Chlorination byproduct formation in the presence of humic acid, model nitrogenous organic compounds, ammonia, and bromide. Environ Sci Technol. 2004;38:4995–5001.

    CAS  PubMed  Google Scholar 

  63. Weaver WA, Li J, Wen Y, Johnston J, Blatchley MR, Blatchley ER III. Volatile disinfection by-products analysis from chlorinated indoor swimming pools. Water Res. 2009;43:3308–18.

    CAS  PubMed  Google Scholar 

  64. Gazda M, Dejarme LE, Choudhury TK, Cooks RG, Mergerum DW. Mass spectrometric evidence for the formation of bromochloramine and N-bromo-N-chlormethylamine in aqueous solution. Environ Sci Technol. 1993;27:557–61.

    CAS  Google Scholar 

  65. Yang X, Shang C. Quantification of aqueous cyanogen chloride and cyanogen bromide in environmental samples by MIMS. Water Res. 2005;39:1709–18.

    CAS  PubMed  Google Scholar 

  66. Yang X, Shang C, Westerhoff P. Factors affecting formation of haloacetonitriles, haloketones, chloropicrin and cyanogen halides during chloramination. Water Res. 2007;41:1193–200.

    CAS  PubMed  Google Scholar 

  67. Jing L, Li C, Wong RL, Kaplan DA, Amster IJ. Improved mass accuracy for higher mass peptides by using SWIFT excitation for MALDI-FTICR mass spectrometry. J Am Soc Mass Spectrom. 2008;19:76–81.

    CAS  PubMed  Google Scholar 

  68. Scully FR, Bempong MA. Organic N-chloramines: chemistry and toxicology. Environ Health Perspect. 1982;46:111–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hansen KF, Gylling S, Lauritsen FR. Time- and concentration-dependent relative peak intensities observed in electron impact membrane inlet mass spectra. Int J Mass Spectrom Ion Process. 1996;152:143–55.

    CAS  Google Scholar 

  70. Isaac R.A, Morris J.C. Rates of transfer of active chorine between nitrogenous substrates. Water Chlorination: Environmental Impact and Health Effects, Vol. 3. Ann Arbor Science, Ann Arbor, Mich (1980).

Download references

Acknowledgements

This research was conducted in partnership between EDF R&D LNHE (Laboratoire National d’Hydraulique et Environnement), and the Ecole Polytechnique/CNRS (National Center for Scientific Research). A part of the financial support for this work was provided by EDF Research & Development, to which the authors are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Kinani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 4050 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roumiguières, A., Bouchonnet, S. & Kinani, S. Challenges and opportunities for on-line monitoring of chlorine-produced oxidants in seawater using portable membrane-introduction Fourier transform-ion cyclotron resonance mass spectrometry. Anal Bioanal Chem 413, 885–900 (2021). https://doi.org/10.1007/s00216-020-03043-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03043-3

Keywords

Navigation