Skip to main content
Log in

New miniaturized clean-up procedure for hair samples by means of microextraction by packed sorbent: determination of cocaine and metabolites

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cocaine is still one of the most commonly used illicit substances worldwide, with an estimated 4 million users in Europe in the last year. Hair samples have been widely used for the determination of episodic or repeated consumption of this substance, but the use of miniaturized techniques for hair sample clean-up has been challenging due to the sample complexity. Despite hair’s complex matrix, MEPS provides a method that is fast, reduces the volume of extraction solvents used, and offers low-cost options (since extraction beds may be reused several times). Microextraction by packed sorbent using a mixed-mode sorbent was optimized for hair sample clean-up in order to determine cocaine, benzoylecgonine, ecgonine methyl ester, norcocaine, cocaethylene and anhydroecgonine methyl ester by gas chromatography coupled to tandem mass spectrometry. The method was fully validated according to internationally accepted criteria, presenting good linearity between the limits of quantification (0.01–0.15) and 5 ng/mg. Precision and accuracy resulted in coefficients of variation typically lower than 15%, with mean relative errors within ±15% for all compounds, except for the limit of quantification (±20%). The present work describes the first application of microextraction by packed sorbent for the concentration of cocaine and metabolites extracted from hair samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) (2019) EU Drug Markets Report. https://www.emcdda.europa.eu/system/files/publications/12078/20192630_TD0319332ENN_PDF.pdf. Accessed 20 May 2020.

  2. Butler AJ, Rehm J, Fischer B. Health outcomes associated with crack-cocaine use: systematic review and meta-analyses. Drug Alcohol Depend. 2017;180:401–16. https://doi.org/10.1016/j.drugalcdep.2017.08.036.

    Article  CAS  PubMed  Google Scholar 

  3. Kintz P. Value of hair analysis in postmortem toxicology. Forensic Sci Int. 2004;142:127–34. https://doi.org/10.1016/j.forsciint.2004.02.027.

    Article  CAS  PubMed  Google Scholar 

  4. Barroso M, Gallardo E. Hair analysis for forensic applications: is the future bright? Bioanalysis. 2014;6:1–3. https://doi.org/10.4155/bio.13.291.

    Article  CAS  PubMed  Google Scholar 

  5. Scheidweiler KB, Huestis MA. Simultaneous quantification of opiates, cocaine, and metabolites in hair by LC-APCI-MS/MS. Anal Chem. 2004;76:4358–63. https://doi.org/10.1021/ac049555t.

    Article  CAS  PubMed  Google Scholar 

  6. Clauwaert KM, Van Bocxlaer JF, Lambert WE, De Leenheer AP. Segmental analysis for cocaine and metabolites by HPLC in hair of suspected drug overdose cases. Forensic Sci Int. 2000;110:157–66. https://doi.org/10.1016/S0379-0738(00)00162-6.

    Article  CAS  PubMed  Google Scholar 

  7. Barroso M, Gallardo E, Vieira DN, López-Rivadulla M, Queiroz JA. Hair: a complementary source of bioanalytical information in forensic toxicology. Bioanalysis. 2011;3:67–79. https://doi.org/10.4155/bio.10.171.

    Article  CAS  PubMed  Google Scholar 

  8. Hoelzle C, Scheufler F, Uhl M, Sachs H, Thieme D. Application of discriminant analysis to differentiate between incorporation of cocaine and its congeners into hair and contamination. Forensic Sci Int. 2008;176:13–8. https://doi.org/10.1016/j.forsciint.2007.07.020.

    Article  CAS  PubMed  Google Scholar 

  9. Baciu T, Borrull F, Calull M, Aguilar C. Determination of cocaine in abuser hairs by CE: monitoring compliance to a detoxification program. Bioanalysis. 2015;7:437–47. https://doi.org/10.4155/bio.14.291.

    Article  CAS  PubMed  Google Scholar 

  10. Barroso M, Gallardo E, Queiroz JA. Bioanalytical methods for the determination of cocaine and metabolites in human biological samples. Bioanalysis. 2009;1:977–1000. https://doi.org/10.4155/bio.09.72.

    Article  CAS  PubMed  Google Scholar 

  11. Franz T, Scheufler F, Stein K, Uhl M, Dame T, Schwarz G, et al. Determination of hydroxy metabolites of cocaine from hair samples and comparison with street cocaine samples. Forensic Sci Int. 2018;288:223–6. https://doi.org/10.1016/j.forsciint.2018.04.007.

    Article  CAS  PubMed  Google Scholar 

  12. Alves MNR, Zanchetti G, Piccinotti A, Tameni S, De Martinis BS, Polettini A. Determination of cocaine and metabolites in hair by column-switching LC-MS-MS analysis. Anal Bioanal Chem. 2013;405:6299–306. https://doi.org/10.1007/s00216-013-7046-3.

    Article  CAS  PubMed  Google Scholar 

  13. Gray T, Brace L, Shah S, Tolhurst T, Juhascik M, Negrusz A. Detection and quantitation of cocaine and metabolites in urine and hair after consumption of coca tea. Probl Forensic Sci. 2013;93:450–64.

    CAS  Google Scholar 

  14. Vignali C, Stramesi C, Vecchio M, Groppi A. Hair testing and self-report of cocaine use. Forensic Sci Int. 2012;215:77–80. https://doi.org/10.1016/j.forsciint.2011.05.007.

    Article  CAS  PubMed  Google Scholar 

  15. Fernández P, Lago M, Lorenzo RA, Carro AM, Bermejo AM, Tabernero MJ. Optimization of a rapid microwave-assisted extraction method for the simultaneous determination of opiates, cocaine and their metabolites in human hair. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877:1743–50. https://doi.org/10.1016/j.jchromb.2009.04.035.

    Article  CAS  Google Scholar 

  16. Cooper GAA, Kronstrand R, Kintz P. Society of Hair Testing guidelines for drug testing in hair. Forensic Sci Int. 2012;218:20–4. https://doi.org/10.1016/j.forsciint.2011.10.024.

    Article  CAS  PubMed  Google Scholar 

  17. David F, Van Hoeck E, Sandra P. Towards automated, miniaturized and solvent-free sample preparation methods. Anal Bioanal Chem. 2007;387:141–4. https://doi.org/10.1007/s00216-006-0721-x.

    Article  CAS  PubMed  Google Scholar 

  18. Gambelunghe C, Rossi R, Aroni K, Gili A, Bacci M, Pascali V, et al. Norcocaine and cocaethylene distribution patterns in hair samples from light, moderate, and heavy cocaine users. Drug Test Anal. 2017;9:161–7. https://doi.org/10.1002/dta.1903.

    Article  CAS  PubMed  Google Scholar 

  19. Fucci N, Gambelunghe C, Aroni K, Rossi R. A direct immersion solid-phase microextraction gas chromatography/mass spectrometry method for the simultaneous detection of levamisole and minor cocaine congeners in hair samples from chronic abusers. Ther Drug Monit. 2014;36:789–95. https://doi.org/10.1097/FTD.0000000000000076.

    Article  CAS  PubMed  Google Scholar 

  20. Poon S, Gareri J, Walasek P, Koren G. Norcocaine in human hair as a biomarker of heavy cocaine use in a high risk population. Forensic Sci Int. 2014;241:150–4. https://doi.org/10.1016/j.forsciint.2014.05.019.

    Article  CAS  PubMed  Google Scholar 

  21. Aleksa K, Walasek P, Fulga N, Kapur B, Gareri J, Koren G. Simultaneous detection of seventeen drugs of abuse and metabolites in hair using solid phase micro extraction (SPME) with GC/MS. Forensic Sci Int. 2012;218:31–6. https://doi.org/10.1016/j.forsciint.2011.10.002.

    Article  CAS  PubMed  Google Scholar 

  22. Silva EAS, Risticevic S, Pawliszyn J. Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. TrAC Trends Anal Chem. 2013;43:24–36. https://doi.org/10.1016/j.trac.2012.10.006.

    Article  CAS  Google Scholar 

  23. Pego AMF, Roveri FL, Kuninari RY, Leyton V, Miziara ID, Yonamine M. Determination of cocaine and its derivatives in hair samples by liquid phase microextraction (LPME) and gas chromatography–mass spectrometry (GC–MS). Forensic Sci Int. 2017;274:83–90. https://doi.org/10.1016/j.forsciint.2016.12.024.

    Article  CAS  PubMed  Google Scholar 

  24. Mahdi M, Abdel-rehim A, Abdel-rehim M. Trends in analytical chemistry microextraction by packed sorbent (MEPS). Trends Anal Chem. 2015;67:34–44. https://doi.org/10.1016/j.trac.2014.12.003.

    Article  CAS  Google Scholar 

  25. Miyaguchi H, Iwata YT, Kanamori T, Tsujikawa K, Kuwayama K, Inoue H. Rapid identification and quantification of methamphetamine and amphetamine in hair by gas chromatography/mass spectrometry coupled with micropulverized extraction, aqueous acetylation and microextraction by packed sorbent. J Chromatogr A. 2009;1216:4063–70. https://doi.org/10.1016/j.chroma.2009.02.093.

    Article  CAS  PubMed  Google Scholar 

  26. Gallardo E, Rosado T, Barroso M, Vieira DN. Determination of selected opiates in hair samples using microextraction by packed sorbent: a new approach for sample clean-up. J Anal Toxicol. 2019;43:465–76. https://doi.org/10.1093/jat/bkz029.

    Article  CAS  PubMed  Google Scholar 

  27. Rosado T, Gallardo E, Vieira DN, Barroso M. Microextraction by packed sorbent as a novel strategy for sample clean-up in the determination of methadone and Eddp in hair. J Anal Toxicol. 2020. https://doi.org/10.1093/jat/bkaa040.

  28. Food and Drug Administration (2018) Bioanalytical Method Validation Guidance for Industry. https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf. Accessed 20 May 2020.

  29. Scientific Working Group for Forensic Toxicology. Scientific Working Group for Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. J Anal Toxicol. 2013;37:452–74. https://doi.org/10.1093/jat/bkt054.

    Article  CAS  Google Scholar 

  30. Rosado T, Gonçalves A, Margalho C, Barroso M, Gallardo E (2017) Rapid analysis of cocaine and metabolites in urine using microextraction in packed sorbent and GC/MS. Anal Bioanal Chem 409. https://doi.org/10.1007/s00216-016-0152-2.

  31. Cognard E, Rudaz S, Bouchonnet S, Staub C. Analysis of cocaine and three of its metabolites in hair by gas chromatography-mass spectrometry using ion-trap detection for CI/MS/MS. J Chromatogr B Anal Technol Biomed Life Sci. 2005;826:17–25. https://doi.org/10.1016/j.jchromb.2005.07.043.

    Article  CAS  Google Scholar 

  32. World Anti-Doping Agency (2015) Minimum criteria for chromatographic-mass spectrometric confirmation of the identity of analytes for doping control purposes. https://www.wada-ama.org/sites/default/files/resources/files/td2015idcr_-_eng.pdf. Accessed 8 Jan 2018.

  33. Salomone A, Tsanaclis L, Agius R, Kintz P, Baumgartner MR. European guidelines for workplace drug and alcohol testing in hair. Drug Test Anal. 2016;8:996–1004. https://doi.org/10.1002/dta.1999.

    Article  CAS  PubMed  Google Scholar 

  34. Merola G, Gentili S, Tagliaro F, MacChia T. Determination of different recreational drugs in hair by HS-SPME and GC/MS. Anal Bioanal Chem. 2010;397:2987–95. https://doi.org/10.1007/s00216-010-3882-6.

    Article  CAS  PubMed  Google Scholar 

  35. Gentili S, Cornetta M, Macchia T. Rapid screening procedure based on headspace solid-phase microextraction and gas chromatography-mass spectrometry for the detection of many recreational drugs in hair. J Chromatogr B Anal Technol Biomed Life Sci. 2004;801:289–96. https://doi.org/10.1016/j.jchromb.2003.11.034.

    Article  CAS  Google Scholar 

  36. Schiavone S, Marsili R, Iuliano G, Ghizzoni O, Chiarotti M. Cocaine analysis in hair: solid-phase microextraction (SPME) versus supercritical fluid extraction (SFE). J Can Soc Forensic Sci. 2007;40:143–9. https://doi.org/10.1080/00085030.2007.10757156.

    Article  CAS  Google Scholar 

  37. Bermejo AM, López P, Álvarez I, Tabernero MJ, Fernández P. Solid-phase microextraction for the determination of cocaine and cocaethylene in human hair by gas chromatography-mass spectrometry. Forensic Sci Int. 2006;156:2–8. https://doi.org/10.1016/j.forsciint.2005.09.007.

    Article  CAS  PubMed  Google Scholar 

  38. Gambelunghe C, Rossi R, Ferranti C, Rossi R, Bacci M. Hair analysis by GC/MS/MS to verify abuse of drugs. J Appl Toxicol. 2005;25:205–11. https://doi.org/10.1002/jat.1054.

    Article  CAS  PubMed  Google Scholar 

  39. Uhl M. Tandem mass spectrometry: a helpful tool in hair analysis for the forensic expert. Forensic Sci Int. 2000;107:169–79. https://doi.org/10.1016/S0379-0738(99)00161-9.

    Article  CAS  PubMed  Google Scholar 

  40. Pichini S, Pacifici R, Altieri I, Pellegrini M, Zuccaro P. Determination of opiates and cocaine in hair as trimethylsilyl derivatives using gas chromatography-tandem mass spectrometry. J Anal Toxicol. 1999;23:343–8. https://doi.org/10.1093/jat/23.5.343.

    Article  CAS  PubMed  Google Scholar 

  41. Kidwell DA, Blanco MA, Smith FP. Cocaine detection in a university population by hair analysis and skin swab testing. Forensic Sci Int. 1997;84:75–86. https://doi.org/10.1016/S0379-0738(96)02051-8.

    Article  CAS  PubMed  Google Scholar 

  42. Musshoff F, Thieme D, Schwarz G, Sachs H, Skopp G, Franz T. Determination of hydroxy metabolites of cocaine in hair samples for proof of consumption. Drug Test Anal. 2018;10:681–8. https://doi.org/10.1002/dta.2317.

    Article  CAS  PubMed  Google Scholar 

  43. Fernández M del MR, Di Fazio V, Wille SMR, Kummer N, Samyn N. A quantitative, selective and fast ultra-high performance liquid chromatography tandem mass spectrometry method for the simultaneous analysis of 33 basic drugs in hair (amphetamines, cocaine, opiates, opioids and metabolites). J Chromatogr B Anal Technol Biomed Life Sci. 2014;965:7–18. https://doi.org/10.1016/j.jchromb.2014.05.055.

    Article  CAS  Google Scholar 

  44. Schaffer M, Cheng CC, Chao O, Hill V, Matsui P. Analysis of cocaine and metabolites in hair: validation and application of measurement of hydroxycocaine metabolites as evidence of cocaine ingestion. Anal Bioanal Chem. 2016;408:2043–54. https://doi.org/10.1007/s00216-016-9354-x.

    Article  CAS  PubMed  Google Scholar 

  45. Shah I, Petroczi A, Uvacsek M, Ránky M, Naughton DP. Hair-based rapid analyses for multiple drugs in forensics and doping: application of dynamic multiple reaction monitoring with LC-MS/MS. Chem Cent J. 2014;8:1–10. https://doi.org/10.1186/s13065-014-0073-0.

    Article  CAS  Google Scholar 

  46. Imbert L, Dulaurent S, Mercerolle M, Morichon J, Lachâtre G, Gaulier JM. Development and validation of a single LC-MS/MS assay following SPE for simultaneous hair analysis of amphetamines, opiates, cocaine and metabolites. Forensic Sci Int. 2014;234:132–8. https://doi.org/10.1016/j.forsciint.2013.11.004.

    Article  CAS  PubMed  Google Scholar 

  47. Bourland JA, Hayes EF, Kelly RC, Sweeney SA, Hatab MM. Quantification of cocaine, benzoylecgonine, cocaethylene, methylecgonine, and norcocaine in human hair by positive ion chemical ionization (PICI) gas chromatography-tandem mass spectrometry. J Anal Toxicol. 2000;24:489–95. https://doi.org/10.1093/jat/24.7.489.

    Article  CAS  PubMed  Google Scholar 

  48. Quintela O, Lendoiro E, Cruz A, de Castro A, Quevedo A, Jurado C, et al. Hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC-MS/MS) determination of cocaine and its metabolites benzoylecgonine, ecgonine methyl ester, and cocaethylene in hair samples. Anal Bioanal Chem. 2010;396:1703–12. https://doi.org/10.1007/s00216-009-3393-5.

    Article  CAS  PubMed  Google Scholar 

  49. Kintz P, Cirimele V, Sengler C, Mangin P. Testing human hair and urine for anhydroecgonine methyl ester, a pyrolysis product of cocaine. J Anal Toxicol. 1995;19:479–82. https://doi.org/10.1093/jat/19.6.479.

    Article  CAS  PubMed  Google Scholar 

  50. Kintz P, Mangin P. Simultaneous determination of opiates, cocaine and major metabolites of cocaine in human hair by gas chromotography/mass spectrometry (GC/MS). Forensic Sci Int. 1995;73:93–100. https://doi.org/10.1016/0379-0738(95)01725-X.

    Article  CAS  PubMed  Google Scholar 

  51. Möller MR, Fey P, Rimbach S. Identification and quantitation of cocaine and its metabolites, benzoylecgonine and ecgonine methyl ester, in hair of Bolivian coca chewers by gas chromatography/mass spectrometry. J Anal Toxicol. 1992;16:291–6. https://doi.org/10.1093/jat/16.5.291.

    Article  PubMed  Google Scholar 

  52. Pereira De Toledo FC, Yonamine M, De Moraes Moreau RL, Silva OA. Determination of cocaine, benzoylecgonine and cocaethylene in human hair by solid-phase microextraction and gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2003;798:361–5. https://doi.org/10.1016/j.jchromb.2003.10.008.

    Article  CAS  Google Scholar 

  53. Natekar A, Matok I, Walasek P, Rao C, Clare-Fasullo G, Koren G. Cocaethylene as a hair biomarker to predict heavy alcohol exposure among cocaine users. J Popul Ther Clin Pharmacol. 2012;19:466–72.

    Google Scholar 

  54. Barroso M, Dias M, Vieira DN, Queiroz JA, López-Rivadulla M. Development and validation of an analytical method for the simultaneous determination of cocaine and its main metabolite, benzoylecgonine, in human hair by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom An Int J Devoted to Rapid Dissem Up-to-the-Minute Res Mass Spectrom. 2008;22:3320–6. https://doi.org/10.1002/rcm.3738.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all the staff of Casas de Santiago (Belmonte, Portugal). The authors wish further to thank Hernâni Marques and Marlene Mota for their laboratorial assistance.

Funding

This work was partially supported by CICS-UBI which is financed by National Funds from Fundação para a Ciência e a Tecnologia (FCT) and Community Funds (UIDB/00709/2020). T. Rosado acknowledges the Centro de Competências em Cloud Computing in the form of a fellowship (C4_WP2.6_M1 – Bioinformatics; Operação UBIMEDICAL – CENTRO-01-0145-FEDER-000019 – C4 – Centro de Competências em Cloud Computing), supported by Fundo Europeu de Desenvolvimento Regional (FEDER) through the Programa Operacional Regional Centro (Centro 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia Gallardo.

Ethics declarations

Ethics declarations

This study was conducted according to ethical standards and was approved by the ethics committee from Casas de Santiago. All analyses were carried out according to the ethical standards of the institution, and the analyzed samples were obtained from individuals who provided informed consent for their use (including the drug-free samples used in the validation experiments, provided by laboratory staff).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosado, T., Gallardo, E., Vieira, D.N. et al. New miniaturized clean-up procedure for hair samples by means of microextraction by packed sorbent: determination of cocaine and metabolites. Anal Bioanal Chem 412, 7963–7976 (2020). https://doi.org/10.1007/s00216-020-02929-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02929-6

Keywords

Navigation