Skip to main content
Log in

Non-invasive identification of potato varieties and prediction of the origin of tuber cultivation using spatially offset Raman spectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

High starch content, simplicity of cultivation, and high productivity make potatoes (Solanum tuberosum) a staple in the diet of people around the world. On average, potatoes are composed of 83% water and 12% carbohydrates, and the remaining 4% includes proteins, vitamins, and other trace elements. These proportions vary depending on the type of potato and location where they were cultivated. At the same time, the chemical composition determines the nutritional value of potato tubers and can be proved using various wet chemistry and spectroscopic methods. For instance, gravity measurements, as well as several different colorimetric assays, can be used to investigate the starch content. However, these approaches are indirect, often destructive, and time- and labor-consuming. This study reports on the use of Raman spectroscopy (RS) for completely non-invasive and non-destructive assessment of nutrient content of potato tubers. We also show that RS can be used to identify nine different potato varieties, as well as determine the origin of their cultivation. The portable nature of Raman-based identification of potato offers the possibility to perform such analysis directly upon potato harvesting to enable quick quality evaluation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hijmans R. Global distribution of the potato crop. J Am J Potato Res. 2001;78:403–12.

    Article  Google Scholar 

  2. Tillault AS, Yevtushenko DP. Simple sequence repeat analysis of new potato varieties developed in Alberta, Canada. Plant Direct. 2019;3:e00140. https://doi.org/10.1002/pld3.140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Potato Genome Sequencing C, Xu X, Pan S, Cheng S, Zhang B, Mu D, et al. Genome sequence and analysis of the tuber crop potato. Nature. 2011;475:189–95. https://doi.org/10.1038/nature10158.

    Article  CAS  Google Scholar 

  4. Farber C, Mahnke M, Sanchez L, Kurouski D. Advanced spectroscopic techniques for plant disease diagnostics. A review. Trends Anal Chem. 2019;118:43–9.

    Article  CAS  Google Scholar 

  5. Damodaran S, Parkin KL, editors. Fennema’s food chemistry. 5th ed: CRC Press; 2017.

  6. Zhu T, Jackson DS, Wehling RL, Geera B. Comparison of amylose determination methods and the development of a dual wavelength iodine binding technique. J Cereal Chem. 2008;85:51–8.

    Article  CAS  Google Scholar 

  7. Mihaljev Ž, Jakšić S, Prica NB, Ćupić ŽN, Baloš MŽ. Comparison of the Kjeldahl method, Dumas method and NIR method for total nitrogen determination in meat and meat products. J Agroaliment Process Technol. 2015;21(4):365–70.

    CAS  Google Scholar 

  8. Osborne BG, Fearn T, Hindle PH, Hindle PT. Practical NIR spectroscopy with applications in food and beverage analysis: Longman Scientific & Technical; 1993.

  9. Kim Y, Singh M, Kays SE. Near-infrared spectroscopic analysis of macronutrients and energy in homogenized meals. Food Chem. 2007;105(3):1248–55.

    Article  CAS  Google Scholar 

  10. Stubbs TL, Kennedy AC, Fortuna A-M. Using NIRS to predict fiber and nutrient content of dryland cereal cultivars. J Agric Food Chem. 2010;58(1):398–403. https://doi.org/10.1021/jf9025844.

    Article  CAS  PubMed  Google Scholar 

  11. Berardo N, Brenna OV, Amato A, Valoti P, Pisacane V, Motto M. Carotenoids concentration among maize genotypes measured by near infrared reflectance spectroscopy (NIRS). Innov Food Sci Emerg Technol. 2004;5(3):393–8. https://doi.org/10.1016/j.ifset.2004.03.001.

    Article  CAS  Google Scholar 

  12. Baranska M, Schütze W, Schulz H. Determination of lycopene and β-carotene content in tomato fruits and related products: comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Anal Chem. 2006;78(24):8456–61. https://doi.org/10.1021/ac061220j.

    Article  CAS  PubMed  Google Scholar 

  13. Kurouski D, Van Duyne RP, Lednev IK. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review. Analyst. 2015;140(15):4967–80. https://doi.org/10.1039/c5an00342c.

    Article  CAS  PubMed  Google Scholar 

  14. Krimmer M, Farber C, Kurouski D. Rapid and noninvasive typing and assessment of nutrient content of maize kernels using a handheld Raman spectrometer. ACS Omega. 2019;4(15):16330–5. https://doi.org/10.1021/acsomega.9b01661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burlingame B, Mouille B, Charrondiere R. Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J Food Compos Anal. 2009;22:494–502.

    Article  CAS  Google Scholar 

  16. Matousek P, Clark IP, Draper ERC, Morris MD, Goodship AE, Everall N, et al. Parker AW subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl Spectrosc. 2005;59(4):393–400. https://doi.org/10.1366/0003702053641450.

    Article  CAS  PubMed  Google Scholar 

  17. Matousek P, Stone N. Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring. Chem Soc Rev. 2016;45(7):1794–802. https://doi.org/10.1039/C5CS00466G.

    Article  CAS  PubMed  Google Scholar 

  18. López-López M, García-Ruiz C. Infrared and Raman spectroscopy techniques applied to identification of explosives. TrAC Trends Anal Chem. 2014;54:36–44. https://doi.org/10.1016/j.trac.2013.10.011.

    Article  CAS  Google Scholar 

  19. Bloomfield M, Andrews D, Loeffen P, Tombling C, York T, Matousek P. Non-invasive identification of incoming raw pharmaceutical materials using spatially offset Raman spectroscopy. J Pharm Biomed Anal. 2013;76:65–9. https://doi.org/10.1016/j.jpba.2012.11.046.

    Article  CAS  PubMed  Google Scholar 

  20. Almeida MR, Alves RS, Nascimbem LB, Stephani R, Poppi RJ, de Oliveira LF. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal Bioanal Chem. 2010;397(7):2693–701. https://doi.org/10.1007/s00216-010-3566-2.

    Article  CAS  PubMed  Google Scholar 

  21. Kizil R, Irudayaraj J, Seetharaman K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J Agric Food Chem. 2002;50(14):3912–8.

    Article  CAS  Google Scholar 

  22. Edwards HG, Farwell DW, Webster D. FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A Mol Biomol Spectrosc. 1997;53A(13):2383–92.

    Article  CAS  Google Scholar 

  23. De Gussem K, Vandenabeele P, Verbeken A, Moens L. Raman spectroscopic study of Lactarius spores (Russulales, Fungi). Spectrochim Acta A. 2005;61(13–14):2896–908. https://doi.org/10.1016/j.saa.2004.10.038.

    Article  CAS  Google Scholar 

  24. Schulz H, Baranska M, Baranski R. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers. 2005;77(4):212–21. https://doi.org/10.1002/bip.20215.

    Article  CAS  PubMed  Google Scholar 

  25. Edwards HGM, Farwell DW, Webster D. FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A. 1997;53(13):2383–92. https://doi.org/10.1016/S1386-1425(97)00178-9.

    Article  Google Scholar 

  26. Walton A. Biopolymers, vol. 1. 1st ed. New York: Academic Press; 1973.

    Google Scholar 

  27. Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K, Kochan K, et al. Raman and infrared spectroscopy of carbohydrates: a review. Spectrochim Acta A. 2017;185:317–35. https://doi.org/10.1016/j.saa.2017.05.045.

    Article  CAS  Google Scholar 

  28. Zheng R, Zheng X, Dong J, Carey PR. Proteins can convert to beta-sheet in single crystals. Protein Sci. 2004;13(5):1288–94. https://doi.org/10.1110/ps.03550404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Larsen KL, Barsberg S. Theoretical and Raman spectroscopic studies of phenolic lignin model monomers. J Phys Chem B. 2010;114(23):8009–21. https://doi.org/10.1021/jp1028239.

    Article  CAS  PubMed  Google Scholar 

  30. Cael JJ, Koenig JL, Blackwell J. Infrared and raman spectroscopy of carbohydrates. Part 4: Normal coordinate analysis of V-amylose. Biopolymers. 1975;14(1):1885–903.

    Article  CAS  Google Scholar 

  31. Adar F. Carotenoids - their resonance Raman spectra and how they can be helpful in characterizing a number of biological systems. Spectroscopy. 2017;32(6):12–20.

    CAS  Google Scholar 

  32. Kang L, Wang K, Li X, Zou B. High pressure structural investigation of benzoic acid: raman spectroscopy and x-ray diffraction. J Phys Chem C. 2016;120(27):14758–66. https://doi.org/10.1021/acs.jpcc.6b05001.

    Article  CAS  Google Scholar 

  33. Agarwal UP. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta. 2016;224(5):1141–53. https://doi.org/10.1007/s00425-006-0295-z.

    Article  CAS  Google Scholar 

  34. Pompeu DR, Larondelle Y, Rogez H, Abbas O, Pierna JAF, Baeten V. Characterization and discrimination of phenolic compounds using Fourier transformation Raman spectroscopy and chemometric tools. Biotechnol Agron Soc Environ. 2017;22(1):1–16.

    Google Scholar 

  35. Egging V, Nguyen J, Kurouski D. Detection and identification of fungal infections in intact wheat and Sorghum grain using a hand-held Raman spectrometer. Anal Chem. 2018;90:8616–21. https://doi.org/10.1021/acs.analchem.8b01863.

    Article  CAS  PubMed  Google Scholar 

  36. Farber C, Kurouski D. Detection and identification of plant pathogens on maize kernels with a hand-held Raman spectrometer. Anal Chem. 2018;90(5):3009–12. https://doi.org/10.1021/acs.analchem.8b00222.

    Article  CAS  PubMed  Google Scholar 

  37. Sanchez L, Ermolenkov A, Tang XT, Tamborindeguy C, Kurouski D. Non-invasive diagnostics of Liberibacter disease on tomatoes using a hand-held Raman spectrometer. Planta. 2020;251(3):64. https://doi.org/10.1007/s00425-020-03359-5.

    Article  CAS  PubMed  Google Scholar 

  38. Sanchez L, Farber C, Lei J, Zhu-Salzman K, Kurouski D. Noninvasive and nondestructive detection of cowpea bruchid within cowpea seeds with a hand-held Raman spectrometer. Anal Chem. 2019;91(3):1733–7. https://doi.org/10.1021/acs.analchem.8b05555.

    Article  CAS  PubMed  Google Scholar 

  39. Sanchez L, Pant S, Irey MS, Mandadi K, Kurouski D. Detection and identification of canker and blight on orange trees using a hand-held Raman spectrometer. J Raman Spectrosc. 2019;50:1875–80.

    Article  CAS  Google Scholar 

  40. Sanchez L, Pant S, Xing Z, Mandadi K, Kurouski D. Rapid and noninvasive diagnostics of Huanglongbing and nutrient deficits on citrus trees with a handheld Raman spectrometer. Anal Bioanal Chem. 2019;411:3125–33.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the AgriLife Research of Texas A&M and the Governor’s University Research Initiative (GURI) grant program of Texas A&M University, GURI Grant Agreement No. 12-2016, M1700437.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Kurouski.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 519 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morey, R., Ermolenkov, A., Payne, W.Z. et al. Non-invasive identification of potato varieties and prediction of the origin of tuber cultivation using spatially offset Raman spectroscopy. Anal Bioanal Chem 412, 4585–4594 (2020). https://doi.org/10.1007/s00216-020-02706-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02706-5

Keywords

Navigation