Skip to main content
Log in

Amperometric biogenic amine biosensors based on Prussian blue, indium tin oxide nanoparticles and diamine oxidase– or monoamine oxidase–modified electrodes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Biogenic amine biosensors, based on screen-printed carbon electrodes (SPCE) modified with Prussian blue (PB) and indium tin oxide nanoparticles (ITONP), are reported. PB/ITONP-modified SPCE was further modified with diamine oxidase (DAO) or monoamine oxidase (MAO) enzymes to construct the biosensors. The morphology of the modified electrodes was studied by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to enlighten the electrochemical properties of the modified electrodes at each step of biosensor fabrication. Electrode surface composition and experimental conditions were optimized and analytical performance characteristics of the biosensors were studied. Several biogenic amines were tested and both biosensors responded to histamine, putrescine and cadaverine. DAO/ITONP/PB/SPCE biosensor exhibited the highest response to histamine 6.0 × 10−6–6.9 × 10−4 M with a sensitivity of 1.84 μA mM−1. On the other hand, the highest sensitivity was obtained for cadaverine with the MAO/ITONP/PB/SPCE biosensor. The analytical utility of the presented biosensors were illustrated by the determination of cadaverine and histamine in cheese sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Calvo-Pérez A, Domínguez-Renedo O, Alonso-Lomillo MA, Arcos-Martínez MJ. Disposable amperometric biosensor for the determination of tyramine using plasma amino oxidase. Microchim Acta. 2013;180(3–4):253–9.

    Google Scholar 

  2. Shalaby AR. Significance of biogenic amines to food safety and human health. Food Res Int. 1996;29(7):675–90.

    CAS  Google Scholar 

  3. Henao-Escobar W, Domínguez-Renedo O, Alonso-Lomillo MA, Arcos-Martínez MJ. Simultaneous determination of cadaverine and putrescine using a disposable monoamine oxidase based biosensor. Talanta. 2013;117:405–11.

    CAS  PubMed  Google Scholar 

  4. Carelli D, Centonze D, Palermo C, Quinto M, Rotunno T. An interference free amperometric biosensor for the detection of biogenic amines in food products. Biosens Bioelectron. 2007;23(5):640–7.

    CAS  PubMed  Google Scholar 

  5. Romano A, Klebanowski H, La Guerche S, Beneduce L, Spano G, Murat M-L, et al. Determination of biogenic amines in wine by thin-layer chromatography/densitometry. Food Chem. 2012;135(3):1392–6.

    CAS  PubMed  Google Scholar 

  6. Lapa-Guimaraes J, Pickova J. New solvent systems for thin-layer chromatographic determination of nine biogenic amines in fish and squid. J Chromatogr A. 2004;1045(1–2):223–32.

    CAS  PubMed  Google Scholar 

  7. Shalaby A. Simple, rapid and valid thin layer chromatographic method for determining biogenic amines in foods. Food Chem. 1999;65(1):117–21.

    CAS  Google Scholar 

  8. Almeida C, Fernandes J, Cunha S. A novel dispersive liquid–liquid microextraction (DLLME) gas chromatography-mass spectrometry (GC–MS) method for the determination of eighteen biogenic amines in beer. Food Control. 2012;25(1):380–8.

    CAS  Google Scholar 

  9. Innocente N, Biasutti M, Padovese M, Moret S. Determination of biogenic amines in cheese using HPLC technique and direct derivatization of acid extract. Food Chem. 2007;101(3):1285–9.

    CAS  Google Scholar 

  10. Önal A. A review: current analytical methods for the determination of biogenic amines in foods. Food Chem. 2007;103(4):1475–86.

    Google Scholar 

  11. Önal A, Tekkeli SEK, Önal C. A review of the liquid chromatographic methods for the determination of biogenic amines in foods. Food Chem. 2013;138(1):509–15.

    PubMed  Google Scholar 

  12. Bóka B, Adányi N, Virág D, Sebela M, Kiss A. Spoilage detection with biogenic amine biosensors, comparison of different enzyme electrodes. Electroanalysis. 2012;24(1):181–6.

    Google Scholar 

  13. Leonardo S, Campàs M. Electrochemical enzyme sensor arrays for the detection of the biogenic amines histamine, putrescine and cadaverine using magnetic beads as immobilisation supports. Microchim Acta. 2016;183(6):1881–90.

    CAS  Google Scholar 

  14. Aigner M, Telsnig D, Kalcher K, Teubl C, Macheroux P, Wallner S, et al. Amperometric biosensor for total monoamines using a glassy carbon paste electrode modified with human monoamine oxidase B and manganese dioxide particles. Microchim Acta. 2015;182(5–6):925–31.

    CAS  Google Scholar 

  15. Boffi A, Favero G, Federico R, Macone A, Antiochia R, Tortolini C, et al. Amine oxidase-based biosensors for spermine and spermidine determination. Anal Bioanal Chem. 2015;407(4):1131–7.

    CAS  PubMed  Google Scholar 

  16. Dalkıran B, Erden PE, Kaçar C, Kılıç E. Disposable Amperometric biosensor based on poly-L-lysine and Fe3O4 NPs-chitosan composite for the detection of Tyramine in cheese. Electroanalysis. 2019;31(7):1324–33.

    Google Scholar 

  17. Shi X, Gu W, Li B, Chen N, Zhao K, Xian Y. Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta. 2014;181(1–2):1–22.

    CAS  Google Scholar 

  18. Liu B, Liu J. DNA adsorption by indium tin oxide nanoparticles. Langmuir. 2014;31(1):371–7.

    PubMed  Google Scholar 

  19. Sivasakthi P, Bapu GR, Chandrasekaran M. Pulse electrodeposited nickel-indium tin oxide nanocomposite as an electrocatalyst for non-enzymatic glucose sensing. Mater Sci Eng C. 2016;58:782–9.

    CAS  Google Scholar 

  20. Aydın EB, Sezgintürk MK. Indium tin oxide (ITO): a promising material in biosensing technology. TrAC Trends in Anal Chem. 2017;97:309–15.

    Google Scholar 

  21. Wang J, Wang L, Di J, Tu Y. Disposable biosensor based on immobilization of glucose oxidase at gold nanoparticles electrodeposited on indium tin oxide electrode. Sens Actuators B: Chemical. 2008;135(1):283–8.

    CAS  Google Scholar 

  22. El-Said WA, Choi J-W. Electrochemical biosensor consisted of conducting polymer layer on gold nanodots patterned indium tin oxide electrode for rapid and simultaneous determination of purine bases. Electrochim Acta. 2014;123:51–7.

    CAS  Google Scholar 

  23. Liang F, Jia M, Hu J. Pt-implanted indium tin oxide electrodes and their amperometric sensor applications for nitrite and hydrogen peroxide. Electrochim Acta. 2012;75:414–9.

    CAS  Google Scholar 

  24. Rigoni F, Drera G, Pagliara S, Goldoni A, Sangaletti L. High sensitivity, moisture selective, ammonia gas sensors based on single-walled carbon nanotubes functionalized with indium tin oxide nanoparticles. Carbon. 2014;80:356–63.

    CAS  Google Scholar 

  25. Bobrowski T, Arribas EG, Ludwig R, Toscano MD, Shleev S, Schuhmann W. Rechargeable, flexible and mediator-free biosupercapacitor based on transparent ITO nanoparticle modified electrodes acting in μM glucose containing buffers. Biosens Bioelectron. 2018;101:84–9.

    CAS  PubMed  Google Scholar 

  26. Chen X, Wu G, Cai Z, Oyama M, Chen X. Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta. 2014;181(7–8):689–705.

    CAS  Google Scholar 

  27. Erden PE, Kılıç E. A review of enzymatic uric acid biosensors based on amperometric detection. Talanta. 2013;107:312–23.

    CAS  PubMed  Google Scholar 

  28. Benedet J, Lu D, Cizek K, La Belle J, Wang J. Amperometric sensing of hydrogen peroxide vapor for security screening. Anal Bioanal Chem. 2009;395(2):371–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Özdemir DS, Kaçar C, Dalkıran B, Küçükkolbaşı S, Erden PE, Kılıç E. Effect of hexaammineruthenium chloride and/or horseradish peroxidase on the performance of hydrogen peroxide (bio) sensors: a comparative study. J Mater Sci. 2019;54(7):5381–98.

    Google Scholar 

  30. Karyakin AA, Karyakina EE. Prussian blue-basedartificial peroxidase'as a transducer for hydrogen peroxide detection. Application to biosensors. Sens Actuators B: Chemical. 1999;57(1–3):268–73.

    CAS  Google Scholar 

  31. Karyakin AA, Karyakina EE, Gorton L. Amperometric biosensor for glutamate using prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide. Anal Chem. 2000;72(7):1720–3.

    CAS  PubMed  Google Scholar 

  32. Ricci F, Amine A, Palleschi G, Moscone D. Prussian blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosens Bioelectron. 2003;18(2–3):165–74.

    CAS  PubMed  Google Scholar 

  33. Garjonyte R, Yigzaw Y, Meskys R, Malinauskas A, Gorton L. Prussian blue-and lactate oxidase-based amperometric biosensor for lactic acid. Sens Actuators B: Chemical. 2001;79(1):33–8.

    CAS  Google Scholar 

  34. Li M, Li Y-T, Li D-W, Long Y-T. Recent developments and applications of screen-printed electrodes in environmental assays—a review. Anal Chim Acta. 2012;734:31–44.

    CAS  PubMed  Google Scholar 

  35. Taleat Z, Khoshroo A, Mazloum-Ardakani M. Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta. 2014;181(9–10):865–91.

    CAS  Google Scholar 

  36. Sekar NC, Shaegh SAM, Ng SH, Ge L, Tan SN. A paper-based amperometric glucose biosensor developed with Prussian blue-modified screen-printed electrodes. Sens Actuators B: Chemical. 2014;204:414–20.

    Google Scholar 

  37. Liu X, Li X, Gao X, Ge L, Sun X, Li F. A universal paper-based electrochemical sensor for zero-background assay of diverse biomarkers. ACS Appl Mater Interfaces. 2019;11(17):15381–8.

    CAS  PubMed  Google Scholar 

  38. Teng Y, Zuo S, Lan M. Direct electron transfer of horseradish peroxidase on porous structure of screen-printed electrode. Biosens Bioelectron. 2009;24(5):1353–7.

    CAS  PubMed  Google Scholar 

  39. Compagnone D, Isoldi G, Moscone D, Palleschi G. Amperometric detection of biogenic amines in cheese using immobilised diamine oxidase. Anal Lett. 2001;34(6):841–54.

    CAS  Google Scholar 

  40. Zotou A, Loukou Z, Soufleros E, Stratis I. Determination of biogenic amines in wines and beers by high performance liquid chromatography with pre-column dansylation and ultraviolet detection. Chromatographia. 2003;57:429–39.

    CAS  Google Scholar 

  41. Martín M, González Orive A, Lorenzo-Luis P, Hernández Creus A, González-Mora JL, Salazar P. Quinone-rich poly (dopamine) magnetic nanoparticles for biosensor applications. ChemPhysChem. 2014;15(17):3742–52.

    PubMed  Google Scholar 

  42. Tsai Y-C, Chiu C-C. Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds. Sens Actuators B: Chemical. 2007;125(1):10–6.

    CAS  Google Scholar 

  43. Pandey PC, Pandey AK, Chauhan DS. Nanocomposite of Prussian blue based sensor for L-cysteine: synergetic effect of nanostructured gold and palladium on electrocatalysis. Electrochim Acta. 2012;74:23–31.

    CAS  Google Scholar 

  44. Wang B, Ji X, Zhao H, Wang N, Li X, Ni R, et al. An amperometric β-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue–chitosan and gold nanoparticles–chitosan nanocomposite films. Biosens Bioelectron. 2014;55:113–9.

    CAS  PubMed  Google Scholar 

  45. Luo X, Killard AJ, Smyth MR. Reagentless glucose biosensor based on the direct electrochemistry of glucose oxidase on carbon nanotube-modified electrodes. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis. 2006;18(11):1131–4.

    CAS  Google Scholar 

  46. Ricci F, Palleschi G. Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosens Bioelectron. 2005;21(3):389–407.

    CAS  PubMed  Google Scholar 

  47. Cinti S, Arduini F, Moscone D, Palleschi G, Killard A. Development of a hydrogen peroxide sensor based on screen-printed electrodes modified with inkjet-printed Prussian blue nanoparticles. Sensors. 2014;14(8):14222–34.

    CAS  PubMed  Google Scholar 

  48. Keow CM, Bakar FA, Salleh AB, Heng LY, Wagiran R, Bean LS. An amperometric biosensor for the rapid assessment of histamine level in tiger prawn (Penaeus monodon) spoilage. Food Chem. 2007;105(4):1636–41.

    CAS  Google Scholar 

  49. Alonso-Lomillo MA, Domínguez-Renedo O, Matos P, Arcos-Martínez MJ. Disposable biosensors for determination of biogenic amines. Anal Chim Acta. 2010;665(1):26–31.

    CAS  PubMed  Google Scholar 

  50. Pérez S, Bartrolí J, Fàbregas E. Amperometric biosensor for the determination of histamine in fish samples. Food Chem. 2013;141(4):4066–72.

    PubMed  Google Scholar 

  51. Gumpu MB, Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB. Development of electrochemical biosensor with ceria–PANI core–shell nano-interface for the detection of histamine. Sens Actuators B: Chemical. 2014;199:330–8.

    CAS  Google Scholar 

  52. Vanegas D, Patiño L, Mendez C, Oliveira D, Torres A, Gomes C, et al. Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors. 2018;8(2):42.

    PubMed Central  Google Scholar 

  53. Torre R, Costa-Rama E, Lopes P, Nouws HP, Delerue-Matos C. Amperometric enzyme sensor for the rapid determination of histamine. Anal Methods. 2019;11(9):1264–9.

    CAS  Google Scholar 

  54. Piermarini S, Volpe G, Federico R, Moscone D, Palleschi G. Detection of biogenic amines in human saliva using a screen-printed biosensor. Anal Lett. 2010;43(7–8):1310–6.

    CAS  Google Scholar 

  55. Di Fusco M, Federico R, Boffi A, Macone A, Favero G, Mazzei F. Characterization and application of a diamine oxidase from Lathyrus sativus as component of an electrochemical biosensor for the determination of biogenic amines in wine and beer. Anal Bioanal Chem. 2011;401(2):707–16.

    PubMed  Google Scholar 

  56. Shanmugam S, Thandavan K, Gandhi S, Sethuraman S, Rayappan JBB, Krishnan UM. Development and evaluation of a highly sensitive rapid response enzymatic nanointerfaced biosensor for detection of putrescine. Analyst. 2011;136(24):5234–40.

    CAS  PubMed  Google Scholar 

  57. Gumpu MB, Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB. Determination of putrescine in tiger prawn using an amperometric biosensor based on immobilization of diamine oxidase onto ceria nanospheres. Food Bioprocess Technol. 2016;9(4):717–24.

    CAS  Google Scholar 

  58. Henao-Escobar W, Domínguez-Renedo O, Alonso-Lomillo MA, Arcos-Martínez MJ. A screen-printed disposable biosensor for selective determination of putrescine. Microchim Acta. 2013;180(7–8):687–93.

    CAS  Google Scholar 

  59. Niculescu M, Nistor C, Frébort I, Peč P, Mattiasson B, Csöregi E. Redox hydrogel-based amperometric bienzyme electrodes for fish freshness monitoring. Anal Chem. 2000;72(7):1591–7.

    CAS  PubMed  Google Scholar 

  60. Al Layla AM, Türkarslan Ö, Kurbanoglu S, Sulaiman ST, Al-Flayeh K, Toppare L. A new amperometric biosensor for diamine: use of a conducting polymer layer. J Macromol Sci, Part A. 2013;50(9):914–22.

    Google Scholar 

  61. Ov P, Ferreira IM, Mendes E, Oliveira BM, Ferreira M. Effect of temperature on evolution of free amino acid and biogenic amine contents during storage of Azeitão cheese. Food Chem. 2001;75(3):287–91.

    Google Scholar 

Download references

Funding

This work was financially supported by The Scientific and Technical Research Council of Turkey (TUBITAK Project No.: 116Z159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esma Kiliç.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaçar, C., Erden, P.E., Dalkiran, B. et al. Amperometric biogenic amine biosensors based on Prussian blue, indium tin oxide nanoparticles and diamine oxidase– or monoamine oxidase–modified electrodes. Anal Bioanal Chem 412, 1933–1946 (2020). https://doi.org/10.1007/s00216-020-02448-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02448-4

Keywords

Navigation