Skip to main content
Log in

Glassy carbon electrode modified with carbon black and cross-linked alginate film: a new voltammetric electrode for paraquat determination

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new electrode based on glassy carbon modified with an alginate film cross-linked with glutaraldehyde containing immobilized carbon black particles was successfully developed and applied for the determination of paraquat (PQ), a herbicide widely used for broadleaf weed control. Different polysaccharides (alginate, cellulose, pectin, starch, and chitosan) were investigated for the immobilization process, and alginate presented the highest chemical modifier potential for PQ determination. Additionally, the influence of chemical cross-linking agents (glutaraldehyde and epichlorohydrin) on the morphology, electrochemical response, and film stability was investigated. All experimental conditions were optimized, including the supporting electrolyte conditions (composition, pH, and concentration) and square wave voltammetry technical parameters. Under the optimized experimental conditions, the PQ analytical curve was linear from 0.4 to 2.0 mg L-1 and the limits of detection and quantification were 0.06 and 0.19 mg L-1, respectively. The proposed electrode is easy to obtain, stable, selective, sensitive, and low cost and was successfully applied for PQ determination in environmental and beverage samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Almeida GLD, Schmitt GC, Valle de Bairros A, Emanuelli T, Garcia SC. Os riscos e danos nas intoxicações por paraquat em animais domésticos. Ciênc Rural. 2007;37:1506–12.

    Article  Google Scholar 

  2. Dinis-Oliveira R, Duarte J, Sanchez-Navarro A, Remiao F, Bastos M, Carvalho F. Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol. 2008;38:13–71.

    Article  CAS  PubMed  Google Scholar 

  3. Lee K, Park EK, Stoecklin-Marois M, Koivunen ME, Gee SJ, Hammock BD, et al. Occupational paraquat exposure of agricultural workers in large Costa Rican farms. Int Arch Occup Environ Health. 2009;82:455–62.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou Q, Kan B, Jian X, Zhang W, Liu H, Zhang Z. Paraquat poisoning by skin absorption: two case reports and a literature review. Exp Ther Med. 2013;6:1504–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. ANVISA. Parecer técnico de reavaliação toxicológica. 2015. http://portal.anvisa.gov.br/documents/33880/2541353/CP%2B942015%2B%2BNT.pdf/50fb348f-3c2a-4992-a3a2-ca89fd4d2127. Accessed 12 Nov 2018.

  6. Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, et al. Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect. 2011;119:866–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rudyk C, Litteljohn D, Syed S, Dwyer Z, Hayley S. Paraquat and psychological stressor interactions as pertains to Parkinsonian co-morbidity. Neurobiol Stress. 2015;2:85–93.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Maya F, Estela JM, Cerdà V. Improved spectrophotometric determination of paraquat in drinking waters exploiting a multisyringe liquid core waveguide system. Talanta. 2011;85:588–95.

    Article  CAS  PubMed  Google Scholar 

  9. Gao L, Liu J, Wang C, Liu G, Niu X, Shu C, et al. Fast determination of paraquat in plasma and urine samples by solid-phase microextraction and gas chromatography–mass spectrometry. J Chromatogr B. 2014;944:136–40.

    Article  CAS  Google Scholar 

  10. Zou Y, Shi Y, Bai Y, Tang J, Chen Y, Wang L. An improved approach for extraction and high-performance liquid chromatography analysis of paraquat in human plasma. J Chromatogr B. 2011;879:1809–12.

    Article  CAS  Google Scholar 

  11. Chuntib P, Themsirimongkon S, Saipanya S, Jakmunee J. Sequential injection differential pulse voltammetric method based on screen printed carbon electrode modified with carbon nanotube/Nafion for sensitive determination of paraquat. Talanta. 2017;170:1–8.

    Article  CAS  PubMed  Google Scholar 

  12. Walcarius A, Lamberts L. Square wave voltammetric determination of paraquat and diquat in aqueous solution. J Electroanal Chem. 1996;406:59–68.

    Article  Google Scholar 

  13. Souza D, Codognoto L, Machado S, Avaca L. Electroanalytical determination of the herbicide paraquat in natural water and commercial tea samples with gold electrodes obtained from recordable compact disc. Anal Lett. 2005;38:331–41.

    Article  CAS  Google Scholar 

  14. Selva TMG, de Araujo WR, Paixão TRLP. Non-invasive salivary electrochemical quantification of paraquat poisoning using boron doped diamond electrode. Electroanalysis. 2015;27:1642–8.

    Article  CAS  Google Scholar 

  15. Farahi A, Achak M, El Gaini L, El Mhammedi MA, Bakasse M. Electrochemical determination of paraquat in citric fruit based on electrodeposition of silver particles onto carbon paste electrode. J Food Drug Anal. 2015;23:463–71.

    Article  CAS  PubMed  Google Scholar 

  16. Lopes IC, De Souza D, Machado SA, Tanaka AA. Voltammetric detection of paraquat pesticide on a phthalocyanine-based pyrolitic graphite electrode. Anal Bioanal Chem. 2007;388:1907–14.

    Article  CAS  PubMed  Google Scholar 

  17. Figueiredo-Filho LCS, Santos VB, Janegitz BC, Guerreiro TB, Fatibello-Filho O, Faria RC, et al. Differential pulse voltammetric determination of Paraquat using a bismuth-film electrode. Electroanalysis. 2010;22:1260–6.

    Article  CAS  Google Scholar 

  18. Garcia LLC, Figueiredo-Filho LCS, Oliveira GG, Fatibello-Filho O, Banks CE. Square-wave voltammetric determination of paraquat using a glassy carbon electrode modified with multiwalled carbon nanotubes within a dihexadecylhydrogenphosphate (DHP) film. Sensors Actuators B Chem. 2013;181:306–11.

    Article  CAS  Google Scholar 

  19. Ye X, Gu Y, Wang C. Fabrication of the Cu2O/polyvinyl pyrrolidone-graphene modified glassy carbon-rotating disk electrode and its application for sensitive detection of herbicide paraquat. Sensors Actuators B Chem. 2012;173:530–9.

    Article  CAS  Google Scholar 

  20. Pereira AC, Santos ADS, Kubota LT. Tendências em modificação de eletrodos amperométricos para aplicações eletroanalíticas. Quim Nova. 2002;25:1012–21.

    CAS  Google Scholar 

  21. Zoski CG. Handbook of electrochemistry. Amsterdam: Elsevier; 2007.

    Google Scholar 

  22. Wang J. Analytical electrochemistry. 3rd ed. Hoboken: Wiley; 2006.

    Book  Google Scholar 

  23. Vicentini FC, Ravanini AE, Figueiredo-Filho LC, Iniesta J, Banks CE, Fatibello-Filho O. Imparting improvements in electrochemical sensors: evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms. Electrochim Acta. 2015;157:125–33.

    Article  CAS  Google Scholar 

  24. Silva TA, Moraes FC, Janegitz BC, Fatibello-Filho O. Electrochemical biosensors based on nanostructured carbon black: a review. J Nanomater. 2017;14. https://doi.org/10.1155/2017/4571614.

  25. Kalcher K, Kauffmann JM, Wang J, Švancara I, Vytřas K, Neuhold C, et al. Sensors based on carbon paste in electrochemical analysis: a review with particular emphasis on the period 1990–1993. Electroanalysis. 1995;7:5–22.

    Article  CAS  Google Scholar 

  26. Gombotz WR, Wee S. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31:267–85.

    Article  CAS  PubMed  Google Scholar 

  27. Haroon M, Wang L, Yu H, Abbasi NM, Saleem M, Khan RU, et al. Chemical modification of starch and its application as an adsorbent material. RSC Adv. 2016;6:78264–85.

    Article  CAS  Google Scholar 

  28. Lessa EF, Gularte MS, Garcia ES, Fajardo AR. Orange waste: a valuable carbohydrate source for the development of beads with enhanced adsorption properties for cationic dyes. Carbohydr Polym. 2017;157:660–8.

    Article  CAS  PubMed  Google Scholar 

  29. Maciel JV, Fava EL, Silva TA, Dias D, Fatibello-Filho O. A combination of voltammetry of immobilized microparticles and carbon black-based cross-linked chitosan films deposited on glassy carbon electrode for the quantification of hydroquinone in dermatologic cream samples. J Solid State Electrochem. 2017;21:2859–68.

    Article  CAS  Google Scholar 

  30. Maciel JV, Durigona AMM, Souza MM, Quadrado RFN, Fajardo AR, Dias D. Polysaccharides derived from natural sources applied to the development of chemically modified electrodes for environmental applications: a review. Trends Environ Anal Chem. 2019. https://doi.org/10.1016/j.teac.2019.e00062.

  31. Oliveira JP, Bruni GP, Lima KO, El Halal SLM, Da Rosa GS, Dias ARG, et al. Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chem. 2017;221:153–60.

    Article  CAS  PubMed  Google Scholar 

  32. Bialik E, Stenqvist BR, Fang Y, Östlund Å, Furó IN, Lindman BR, et al. Ionization of cellobiose in aqueous alkali and the mechanism of cellulose dissolution. J Phys Chem Lett. 2016;24:5044–8.

    Article  CAS  Google Scholar 

  33. Couret L, Irle M, Belloncle C, Cathala B. Extraction and characterization of cellulose nanocrystals from post-consumer wood fiberboard waste. Cellulose. 2017;24:2125–37.

    Article  CAS  Google Scholar 

  34. Díaz A, Dini C, Viña SZ, García MA. Starch extraction process coupled to protein recovery from leguminous tuberous roots (Pachyrhizus ahipa). Carbohydr Polym. 2016;152:231–40.

    Article  CAS  PubMed  Google Scholar 

  35. Gray JA, BeMiller JN. Influence of reaction conditions on the location of reactions in waxy maize starch granules reacted with a propylene oxide analog at low substitution levels. Carbohydr Polym. 2005;60:147–62.

    Article  CAS  Google Scholar 

  36. Hamed I, Özogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol. 2016;48:40–50.

    Article  CAS  Google Scholar 

  37. Kühbeck D, Mayr J, Häring M, Hofmann M, Quignard F, Díaz DD. Evaluation of the nitroaldol reaction in the presence of metal ion-crosslinked alginates. New J Chem. 2015;39:2306–15.

    Article  CAS  Google Scholar 

  38. Kumari S, Rath P, Kumar ASH, Tiwari T. Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environ Technol Innov. 2015;3:77–85.

    Article  Google Scholar 

  39. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seggiani M, Puccini M, Pierini M, Giovando S, Forneris C. Effect of different extraction and precipitation methods on yield and quality of pectin. Int J Food Sci Technol. 2009;44:574–80.

    Article  CAS  Google Scholar 

  41. Ström A, Schuster E, Goh SM. Rheological characterization of acid pectin samples in the absence and presence of monovalent ions. Carbohydr Polym. 2014;113:336–43.

    Article  CAS  PubMed  Google Scholar 

  42. Voo WP, Ooi CW, Islam A, Tey BT, Chan ES. Calcium alginate hydrogel beads with high stiffness and extended dissolution behaviour. Eur Polym J. 2016;75:343–53.

    Article  CAS  Google Scholar 

  43. Xia H, Matharu A. Unavoidable food supply chain waste: acid-free pectin extraction from mango peel via subcritical water. Faraday Discuss. 2017;202:31–42.

    Article  CAS  PubMed  Google Scholar 

  44. Yim SM, Song JE, Kim HR. Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochem. 2017;59:26–36.

    Article  CAS  Google Scholar 

  45. Cocenza DS, Moraes MA, Beppu MM, Fraceto LF. Use of biopolymeric membranes for adsorption of paraquat herbicide from water. Water Air Soil Pollut. 2012;223:3093–104.

    Article  CAS  Google Scholar 

  46. Tahtat D, Bouaicha MN, Benamer S, Nacer-Khodja A, Mahlous M. Development of alginate gel beads with a potential use in the treatment against acute lead poisoning. Int J Biol Macromol. 2017;105:1010–6.

    Article  CAS  PubMed  Google Scholar 

  47. Rashidzadeh A, Olad A, Hejazi MJ. Controlled release systems based on intercalated paraquat onto montmorillonite and clinoptilolite clays encapsulated with sodium alginate. Adv Polym Technol. 2017;36:177–85.

    Article  CAS  Google Scholar 

  48. Wang Z, Jin P, Wang M, Wu G, Sun J, Zhang Y, et al. Highly efficient removal of toxic Pb2+ from wastewater by an alginate-chitosan hybrid adsorbent. J Chem Technol Biotechnol. 2018;93:2691–700.

    Article  CAS  Google Scholar 

  49. CETESB. Guia nacional de coleta e preservação de amostras: água, sedimento, comunidades aquáticas e efluentes líquidos. 2011. http://arquivos.ana.gov.br/institucional/sge/CEDOC/Catalogo/2012/GuiaNacionalDeColeta.pdf. Accessed 30 Mar 2018.

  50. SANTE. SANTE/11813/2017 guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed. 2017. https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf Accessed 31 Jan 2018.

  51. El Harmoudi H, Achak M, Farahi A, Lahrich S, El Gaini L, Abdennouri M, et al. Sensitive determination of paraquat by square wave anodic stripping voltammetry with chitin modified carbon paste electrode. Talanta. 2013;115:172–7.

    Article  CAS  PubMed  Google Scholar 

  52. Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials. 2012;33:3279–305.

    Article  CAS  PubMed  Google Scholar 

  53. Caetano LA, Almeida AJ, Gonçalves L. Effect of experimental parameters on alginate/chitosan microparticles for BCG encapsulation. Mar Drugs. 2016;14:90–120.

    Article  CAS  PubMed Central  Google Scholar 

  54. Wang Y, Feng Y, Zhang XF, Zhang X, Jiang J, Yao J. Alginate-based attapulgite foams as efficient and recyclable adsorbents for the removal of heavy metals. J Colloid Interface Sci. 2018;514:190–8.

    Article  CAS  PubMed  Google Scholar 

  55. Shao ZJ, Huang XL, Yang F, Zhao WF, Zhou XZ, Zhao CS. Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes. Carbohydr Polym. 2018;187:85–93.

    Article  CAS  PubMed  Google Scholar 

  56. Jeon YS, Lei J, Kim JH. Dye adsorption characteristics of alginate/polyaspartate hydrogels. J Ind Eng Chem. 2008;14:726–31.

    Article  CAS  Google Scholar 

  57. Ruiz M, Barron-Zambrano J, Rodilla V, Szygula A, Sastre AM. Paraquat sorption on calcium alginate gel beads. Corfu: 4th WSEAS/IASME International Conference on Dynamical Systems and Control; 2008.

  58. Versaci D, Nasi R, Zubair U, Amici J, Sgroi M, Dumitrescu M, et al. New eco-friendly low-cost binders for Li-ion anodes. J Solid State Electrochem. 2017;21:429–35.

    Article  CAS  Google Scholar 

  59. Hong HJ, Ryu J, Park IS, Ryu T, Chung KS, Kim BG. Investigation of the strontium (Sr(II)) adsorption of an alginate microsphere as a low-cost adsorbent for removal and recovery from seawater. J Environ Manag. 2016;165:263–70.

    Article  CAS  Google Scholar 

  60. Daemi H, Barikani M. Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci Iran. 2012;19:2023–8.

    Article  CAS  Google Scholar 

  61. Kusuktham B, Prasertgul J, Srinun P. Morphology and property of calcium silicate encapsulated with alginate beads. Silicon. 2014;6:191–7.

    Article  CAS  Google Scholar 

  62. Huang S, Xiao Z, Zhai S, Zhai B, Zhang F, An Q. Fabrication of highly-stable Ag/CA@GTA hydrogel beads and their catalytic application. RSC Adv. 2014;4:60460–6.

    Article  CAS  Google Scholar 

  63. Yeom C, Lee KH. Characterization of sodium alginate membrane crosslinked with glutaraldehyde in pervaporation separation. J Appl Polym Sci. 1998;67:209–19.

    Article  CAS  Google Scholar 

  64. Grasselli M, Diaz L, Cascone O. Beaded matrices from cross-linked alginate for affinity and ion exchange chromatography of proteins. Biotechnol Tech. 1993;7:707–12.

    Article  CAS  Google Scholar 

  65. Demirbilek M, Türkoğlu N, Aktürk S. N-Acetylglucoseamine modified alginate sponges as scaffolds for skin tissue engineering. Turk J Biol. 2017;41:796–807.

    Article  CAS  Google Scholar 

  66. Deroco PB, Lourencao BC, Fatibello-Filho O. The use of modified electrode with carbon black as sensor to the electrochemical studies and voltammetric determination of pesticide mesotrione. Microchem J. 2017;133:188–94.

  67. Barbosa FG, Wallner-Kersanach M, Baumgarten MDGZ. Metais traço nas águas portuárias do estuário da Lagoa dos Patos, RS. Braz J Aquat Sci Technol. 2012;16:27–36.

    Article  Google Scholar 

  68. Martini LFD, Caldas SS, Bolzan CM, Bundt ADC, Primel EG, Avila LAD. Risco de contaminação das águas de superfície e subterrâneas por agrotóxicos recomendados para a cultura do arroz irrigado. Ciênc Rural. 2012;42:1715–21.

    Article  CAS  Google Scholar 

  69. Tomková H, Sokolová R, Opletal T, Kučerová P, Kučera L, Součková J, et al. Electrochemical sensor based on phospholipid modified glassy carbon electrode - determination of paraquat. J Electroanal Chem. 2018;821:33–9.

    Article  CAS  Google Scholar 

  70. Abderrahim M, Mhammedi E, Bakasse M, Chtaini A. Square wave voltammetric determination of paraquat at carbon paste electrode modified with hydroxyapatite. Electroanalysis. 2007;19:1727–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank CEME-SUL FURG (for scanning electron microscopy analysis), Cabot Corporation (for carbon black), and CAB English Lessons (for English text correction). ARF thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support (PQ fellowship, process 305974/2016-5).

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant number 405802/2016-1, and was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil (Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiane Dias.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacheco, M.R., Barbosa, S.C., Quadrado, R.F.N. et al. Glassy carbon electrode modified with carbon black and cross-linked alginate film: a new voltammetric electrode for paraquat determination. Anal Bioanal Chem 411, 3269–3280 (2019). https://doi.org/10.1007/s00216-019-01769-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01769-3

Keywords

Navigation