Skip to main content
Log in

Voltammetric detection of paraquat pesticide on a phthalocyanine-based pyrolitic graphite electrode

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work describes the application of an ordinary pyrolitic graphite electrode modified by metallophthalocyanine allied to square wave voltammetry for the study of the electrochemical behavior of the herbicide paraquat and the development of a method for its analytical determination in natural water samples. Preliminary experiments indicated that the best responses, considering the intensities of the current and voltammetric profile for the paraquat reduction process, were obtained when the electrode modified by cobalt phthalocyanine was employed, which had a better catalytic activity as a result of this modification compared with that for an unmodified electrode and electrodes modified by iron, manganese and the acid form of the phthalocyanines. Studies of the concentration of cobalt phthalocyanine and the adsorption time showed that 1.0 × 10−4 mol L−1 cobalt phthalocyanine with an adsorption time of 10 min was sufficient to obtain reliability and stability of modification for employment in the development of the electroanalytical procedure for paraquat determination in natural water samples. The variation in pH of a 0.10 mol L−1 Britton–Robinson buffer solution and the square wave parameters indicated that the best conditions to reduce paraquat were pH 7.0, a frequency of 100 s−1, a scan increment of 2 mV and a square wave amplitude of 50 mV. Under such conditions, the variation of paraquat concentrations from 5.00 × 10−7 to 2.91 × 10−5 mol L−1 showed a linear relation, with detection and quantification limits of 26.53 and 88.23 μg L−1; those values were lower than the maximum limits for drinking water permitted by the Brazilian Environmental Council (100 μg L−1), indicating that the method could be employed to analyze paraquat in drinking water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lewis NS (2001) J Electroanal Chem 508:1–10

    Article  CAS  Google Scholar 

  2. Aldebert P, Novel-Cattin F, Pineri M, Millet P, Doumain C, Durand R (1989) Solid States Ionics 35:3–9

    Article  Google Scholar 

  3. Toma SH, Toma HE (2006) Electrochem Commun 8:1628–1632

    Article  CAS  Google Scholar 

  4. Kobayashi N, Chinone H, Miyazaki A (2003) Electrochim Acta 48:2323–2327

    Article  CAS  Google Scholar 

  5. Gan LH, Goh NK, Chen B, Chu CK, Deen GR, Chew CH (1997) Eur Polym J 33:615–620

    Article  CAS  Google Scholar 

  6. Küpper M, Hessel V, Löwe H, Stark W, Kinkel J, Michel M, Schmidt-Traub H (2003) Electrochim Acta 48:20–22

    Article  CAS  Google Scholar 

  7. Sathiyanarayanan S, Azim SS, Venkatachari G (2007) Electrochim Acta (in press)

  8. Abu YM, Aoki K (2005) J Electroanal Chem (2005) 583:133–139

    Article  CAS  Google Scholar 

  9. Chen SM, Chen JY, Vasantha VS (2006) Electrochim Acta 52:455–465

    Article  CAS  Google Scholar 

  10. Yeh SY, Wang CM (2006) J Electroanal Chem 592:131–138

    Article  CAS  Google Scholar 

  11. Kotkar RM, Srivastava AK (2006) Sens Actuators B 119:524–530

    Article  CAS  Google Scholar 

  12. Leznoff CC, Lever ABP (eds) (1989) Phthalocyanines: properties and applications. VHC, New York

    Google Scholar 

  13. Obirai JC, Nyokong T (2007) J Electroanal Chem (in press)

  14. Ozoemena KI, Nyokong T, Westbroek P (2003) Electroanalysis 15:1762–1770

    Article  CAS  Google Scholar 

  15. Phougat N, Vasudevan P (1997) J Power Sources 69:163–168

    Article  Google Scholar 

  16. Zagal JH (1992) Coord Chem Rev 119:89–136

    Article  CAS  Google Scholar 

  17. Ozoemena KI, Nyokong T (2006) Electrochim Acta 51:2669–2677

    Article  CAS  Google Scholar 

  18. Skladal P (1991) Anal Chim Acta 252:11–15

    Article  CAS  Google Scholar 

  19. Skladal P (1992) Anal Chim Acta 269:281–287

    Article  CAS  Google Scholar 

  20. Li H, Guarr TF (1991) J Electroanal Chem 317:189–202

    Article  CAS  Google Scholar 

  21. Wang Z, Pang D (1990) J Electroanal Chem 283:349–356

    Article  CAS  Google Scholar 

  22. Li HL, Chambers JQ, Hobbs DT (1988) J Appl Electrochem 18:454–459

    Article  CAS  Google Scholar 

  23. Luz RCS, Damos FS, Tanaka AA, Kubota LT (2006) Sens Actuators B 114:1019–1027

    Article  CAS  Google Scholar 

  24. Obirai J, Nyokong T (2005) Electrochim Acta 50:5427–5434

    Article  CAS  Google Scholar 

  25. Siswana M, Ozoemena KI, Nyokong T (2006) Talanta 69:1136–1142

    Article  CAS  Google Scholar 

  26. Chicharro M, Zapardiel A, Bermejo E, Moreno M, Madrid E (2002) Anal Bioanal Chem 373:277–283

    Article  CAS  Google Scholar 

  27. Skladal P, Mascini M (1992) Biosens Bioelectron 7:335–343

    Article  CAS  Google Scholar 

  28. Ciucu AA, Negulescu C, Baldwin RP (2003) Biosens Bioelectron 18:303–310

    Article  CAS  Google Scholar 

  29. Halfon E, Galassi S, Brüggemann R, Provini A (1996) Chemosphere 33:1543–1562

    Article  CAS  Google Scholar 

  30. Rai MK, Das JV, Gupta VK (1997) Talanta 45:343–348

    Article  CAS  Google Scholar 

  31. Saad B, Ariffin M, Saleh MI (1998) Talanta 47:1231–1236

    Article  CAS  Google Scholar 

  32. Kuo TL, Lin DL, Liu RH, Moriya F, Hashimoto Y (2001) Forensic Sci Int 121:134–139

    Article  CAS  Google Scholar 

  33. Walcarius A, Lamberts L (1996) J Electroanal Chem 406:59–65

    Article  Google Scholar 

  34. Hennion MC, Barcelo D (1998) Anal Chim Acta 362:3–34

    Article  CAS  Google Scholar 

  35. Monk PMS, Turner C, Akhtar SP (1999) 44:4817–4826

  36. Hu LT, Sun IW (2000) Talanta 53:443–451

    Article  Google Scholar 

  37. De Souza D, Codognoto L, Machado SAS, Avaca LA (2005) Anal Lett 38:331–345

    Google Scholar 

  38. De Souza D, Machado SAS (2005) Anal Chim Acta 546:85–91

    Article  CAS  Google Scholar 

  39. De Souza D, Machado SAS (2006) Electroanalysis 18:862–872

    Article  CAS  Google Scholar 

  40. Lovrić M, Komorsky-Lovrić S (1988) J Electroanal Chem 248:239–253

    Article  Google Scholar 

  41. Komorsky-Lovric S (1995) J Electroanal Chem 397:211–215

    Article  Google Scholar 

  42. Bertolino FA, Torriero AAJ, Salinas E, Olsina R, Martinez LD, Raba J (2006) Anal Chim Acta 572:32–38

    Article  CAS  Google Scholar 

  43. Pon Saravanan N, Venugopalan S, Senthilkumar N, Santhosh P, Kavita B, Prabu GH (2006) Talanta 69:656–662

    Article  CAS  Google Scholar 

  44. Malagutti AR, Zuin VG, Cavalheiro ETG, Mazo LH (2006) Electroanalysis 18:1028–1034

    Article  CAS  Google Scholar 

  45. Lyon JL, Stevenson KJ (2006) Anal Chem 24:8518–8525

    Article  CAS  Google Scholar 

  46. Zhang HF, Xu LF, Zheng JB (2007) Talanta 71:19–24

    Article  CAS  Google Scholar 

  47. Ensafi AA, Khayamian T, Khaloo SS (2004) Anal Chim Acta 505:201–207

    Article  CAS  Google Scholar 

  48. Mocak J, Bond AM, Mitchel S, Scollary G (1997) Pure Appl Chem 69:297–305

    CAS  Google Scholar 

  49. Bettelheim A, White BA, Raybuck SA, Murray RW (1987) Inorg Chem 26:1009–1015

    Article  CAS  Google Scholar 

  50. Marr JC, King JB (1997) Rapid Commun Mass Spectrom 11:479–483

    Article  CAS  Google Scholar 

  51. Acedo-Valenzuela MI, Galeano-Dıaz T, Mora-Dıez N, Silva-Rodrıguez A (2004) Anal Chim Acta 519:65–71

    Article  CAS  Google Scholar 

  52. http://www.aga-ambiental.com.br/leis/resoluo conama 20-86.doc. Cited 1 Sept 2002

  53. Ibánez M, Pico M, Manes J (1996) J Chromatogr A 727:245–252

    Article  Google Scholar 

  54. Hesketh N, Jones MN, Tipping E (1996) Anal Chim Acta 327:191–198

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from CAPES, CNPq and FAPESP (project 03/12926-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djenaine De Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, I.C., De Souza, D., Machado, S.A.S. et al. Voltammetric detection of paraquat pesticide on a phthalocyanine-based pyrolitic graphite electrode. Anal Bioanal Chem 388, 1907–1914 (2007). https://doi.org/10.1007/s00216-007-1397-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1397-6

Keywords

Navigation