Skip to main content

Advertisement

Log in

Long noncoding RNAs: from genomic junk to rising stars in the early detection of cancer

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Despite having been underappreciated in favor of their protein-coding counterparts for a long time, long noncoding RNAs (lncRNAs) have emerged as functional molecules, which defy the central dogma of molecular biology, with clear implications in cancer. Altered expression levels of some of these large transcripts in human body fluids have been related to different cancer conditions that turns them into potential noninvasive cancer biomarkers. In this review, a brief discussion about the importance and current challenges in the determination of lncRNAs associated to cancer is provided. Different electrochemical nucleic acid-based strategies for lncRNAs detection are critically described. Future perspectives and remaining challenges for the practical implementation of these methodologies in clinical medicine are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. http://www.who.int/cancer/en. (last accessed 13-11-2018).

  2. Stewart BW, Wild CP, editors. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014.

    Google Scholar 

  3. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013;113:6207–33.

    Article  CAS  PubMed  Google Scholar 

  4. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iyer MK, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wan P, Su W, Zhuo Y. The role of long noncoding RNAs in neurodegenerative diseases. Mol Neurobiol. 2017;54(3):2012–21.

    Article  CAS  PubMed  Google Scholar 

  7. Zuo L, Tan Y, Wang Z, Wang K-S, Zhang X, Chem Z, et al. Long non-coding RNAs in psychiatric disorders. Psychiatr Genet. 2016;26(3):109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang H, Chen Z, Wang X, Huang Z, He Z, Chen Y. Long non-coding RNA: a new player in cancer. J Hematol Oncol. 2013;6:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chandra Gupta S, Nandan Tripathi Y. Potential of long non-coding RNAs in cancer patients: from biomarkers to therapeutic targets. Int J Cancer. 2017;140(9):1955–67.

    Article  CAS  PubMed  Google Scholar 

  10. Barbagallo C, Brex D, Caponnetto A, Cirnigliaro M, Scalia M, Magnano A, et al. LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol Ther-Nucleic Acids. 2018;12:229–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bolha L, Ravnik-Glavač M, Glavač D. Long noncoding RNAs as biomarkers in cancer. Dis Markers. 2017;2017:7243968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77(15):3965–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sartori DA, Chan DW. Biomarkers in prostate cancer: what’s new? Opin Oncologia. 2014;26(3):259–64.

    Article  CAS  Google Scholar 

  14. Lee GL, Dobi A, Srivastava S. Prostate cancer: diagnostic performance of the PCA3 urine test. Nat Rev Urol. 2011;8:123–4.

    Article  PubMed  Google Scholar 

  15. Bellassai N, Spotto G. Biosensors for liquid biopsy: circulating nucleic acids to diagnose and treat cancer. Anal Bioanal Chem. 2016;408:7255–64.

    Article  CAS  PubMed  Google Scholar 

  16. D’Agata R, Giuffrida MC, Spoto G. Peptide nucleic acid-based biosensors for cancer diagnosis. Molecules. 2017;22:1951.

    Article  CAS  PubMed Central  Google Scholar 

  17. Vasilyeva E, Lam B, Fang Z, Minden MD, Sargent EH, Kelley SO. Direct genetic analysis of ten cancer cells: tuning sensor structure and molecular probe design for efficient mRNA capture. Angew Chem Int Ed Eng. 2011;50(18):4137–41.

    Article  CAS  Google Scholar 

  18. Tercero N, Wang K, Gong P, Levicky R. Morpholino monolayers: preparation and label-free DNA analysis by surface hybridization. J Am Chem Soc. 2009;131(13):4953–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liao T, Li X, Tong Q, Zou K, Zhang H, Tang L, et al. Ultrasensitive detection of microRNAs with morpholino-functionalized nanochannel biosensor. Anal Chem. 2017;89(10):5511–8.

    Article  CAS  PubMed  Google Scholar 

  20. Li Q, Shao Y, Zhang X, Zheng T, Miao M, Qin L, et al. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumor Biol. 2015;36(3):2007–12.

    Article  CAS  Google Scholar 

  21. Soleymani L, Fang Z, Lam B, Bin X, Vasilyeva E, Ross AJ, et al. Hierarchical nanotextured microelectrodes overcome the molecular transport barrier to achieve rapid, direct bacterial detection. ACS Nano. 2011;5(4):3360–6.

    Article  CAS  PubMed  Google Scholar 

  22. Yamada A, Yu P, Lin W, Okugawa Y, Boland CR, Goel AA. RNA-sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal cancer. Sci Rep. 2018;8:575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Y, Liu Y, Qiao L, Liu Y, Liu B. Advances in signal amplification strategies for electrochemical biosensing. Curr Opin Electrochem. 2018;12:5–12.

    Article  CAS  Google Scholar 

  24. Liu F, Xiang G, Jiang D, Zhang L, Chen X, Liu L, et al. Ultrasensitive strategy based on PtPd nanodendrite/nano-flower-like@GO signal amplification for the detection of long non-coding RNA. Biosens Bioelectron. 2015;74:214–21.

    Article  CAS  PubMed  Google Scholar 

  25. Wharam SD, Marsh P, Lloyd JS, Ray TD, Mock GA, Assenberg R, et al. Specific detection of DNA and RNA targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure. Nucleic Acids Res. 2001;29(11):E54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A. 2004;101(43):15275–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Science. 1985;230(4732):1350–4.

    Article  CAS  PubMed  Google Scholar 

  28. Cardenosa-Rubio MC, Graybill RM, Bailey RC. Combining asymmetric PCR-based enzymatic amplification with silicon photonic microring resonators for the detection of lncRNAs from low input human RNA samples. Analyst. 2018;143:1210–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qi H, Yue S, Bi S, Ding C, Song W. Isothermal exponential amplification techniques: from basic principles to applications in electrochemical biosensors. Biosens Bioelectron. 2018;110:207–17.

    Article  CAS  PubMed  Google Scholar 

  30. Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol. 2006;4:e204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Islam MN, Moriam S, Umer M, Phan H-P, Salomon C, Kline R, et al. Naked-eye and electrochemical detection of isothermally amplified HOTAIR long non-coding RNA. Analyst. 2018;143:3021–8.

    Article  CAS  PubMed  Google Scholar 

  32. Nugen SR, Asiello PJ, Connelly JT, Baeumner AJ. PMMA biosensor for nucleic acids with integrated mixer and electrochemical detection. Biosens Bioelectron. 2009;24(8):2428–33.

    Article  CAS  PubMed  Google Scholar 

  33. Gerasimova YV, Kolpashchikov DM. Enzyme-assisted target recycling (EATR) for nucleic acid detection. Chem Soc Rev. 2014;43:6405–38.

    Article  CAS  PubMed  Google Scholar 

  34. Li X-M, Wang L-L, Luo J, Wei Q-L. A dual-amplified electrochemical detection of mRNA based on duplex-specific nuclease and bio-bar-code conjugates. Biosens Bioelectron. 2015;65:245–50.

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Peng G, Cui F, Qiu Q, Chen X, Huang H. Double determination of long noncoding RNAs from lung cancer via multiamplified electrochemical genosensor at sub-femtomole level. Biosens Bioelectron. 2018;113:116–23.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng H, Liu J, Ma W, Duan S, Huang J, He X, et al. Low background cascade signal amplification electrochemical sensing platform for tumor-related mRNA quantification by target activated hybridization chain reaction and electroactive cargo release. Anal Chem. 2018;90(21):12544–52.

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Wang J, Song Y, Ma B, Luo J, Ni Z, et al. A panel consisting of three novel circulating lncRNAs, is it a predictive tool for gastric cancer? J Cell Mol Med. 2018;22(7):3605–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu HB, Jie HY, Zheng XX. Three circulating lncRNA predict early progress of esophageal squamous cell carcinoma. Cell Physiol Biochem. 2016;40(1–2):117–25.

    Article  CAS  PubMed  Google Scholar 

  39. Wang C, Yu J, Han Y, Li L, Li J, Li T, et al. Long non-coding RNAs LOC285194, RP11-462C24.1 and Nbla12061 in serum provide a new approach for distinguishing patients with colorectal cancer from healthy controls. Oncotarget. 2016;7(43):70769–78.

    PubMed  PubMed Central  Google Scholar 

  40. Mayboroda O, Katakis I, O’Sullivan CK. Multiplexed isothermal nucleic acid amplification. Anal Biochem. 2018;545:20–30.

    Article  CAS  PubMed  Google Scholar 

  41. Shi T, Gao G, Cao Y. Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Dis Markers. 2016;2018:9085195.

    Google Scholar 

  42. Arun G, Diermeier SD, Spector DL. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med. 2018;24(3):257–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. RNA targeting with CRISPR-Cas13a. Nature. 2017;550:280–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors acknowledge the financial support from the Spanish Ministerio de Economía y Competitividad (project no. CTQ2015-63567-R, co-financed by FEDER funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebeca Miranda-Castro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda-Castro, R., de-los-Santos-Álvarez, N. & Lobo-Castañón, M.J. Long noncoding RNAs: from genomic junk to rising stars in the early detection of cancer. Anal Bioanal Chem 411, 4265–4275 (2019). https://doi.org/10.1007/s00216-019-01607-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01607-6

Keywords

Navigation