Skip to main content
Log in

Mapping the triglyceride distribution in NAFLD human liver by MALDI imaging mass spectrometry reveals molecular differences in micro and macro steatosis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Hepatic lipid accumulation, mainly in the form of triglycerides (TGs), is the hallmark of non-alcoholic fatty liver disease (NAFLD). To date, the spatial distribution of individual lipids in NAFLD-affected livers is not well characterized. This study aims to map the triglyceride distribution in normal human liver samples and livers with NAFLD and cirrhosis with imaging mass spectrometry (MALDI IMS). Specifically, whether individual triglyceride species differing by fatty acid chain length and degree of saturation correlate with the histopathological features of NAFLD as identified with classical H&E. Using a recently reported sodium-doped gold-assisted laser desorption/ionization IMS sample preparation, 20 human liver samples (five normal livers, five samples with simple steatosis, five samples with steatohepatitis, and five samples with cirrhosis) were analyzed at 10-μm lateral resolution. A total of 24 individual lipid species, primarily neutral lipids, were identified (22 TGs and two phospholipids). In samples with a low level of steatosis, TGs accumulated around the pericentral zone. In all samples, TGs with different degrees of side-chain saturation and side-chain length demonstrated differential distribution. Furthermore, hepatocytes containing macro lipid droplets were highly enriched in fully saturated triglycerides. This enrichment was also observed in areas of hepatocyte ballooning in samples with steatohepatitis and cirrhosis. In conclusion, macro lipid droplets in NAFLD are enriched in fully saturated triglycerides, indicating a possible increase in de novo lipogenesis that leads to steatohepatitis and cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AuLDI IMS:

Gold-assisted laser desorption/ionization imaging mass spectrometry

DAG:

Diglyceride

DNL:

De novo lipogenesis

FFAs:

Free fatty acids

MALDI IMS:

Matrix-assisted laser desorption/ionization imaging mass spectrometry

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

OCT:

Optimal cutting temperature compound

SFAs:

Saturated fatty acids

SS:

Simple steatosis

TG:

Triglycerides

References

  1. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. https://doi.org/10.1002/hep.28431.

    Article  PubMed  Google Scholar 

  2. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55(6):2005–23. https://doi.org/10.1002/hep.25762.

    Article  PubMed  Google Scholar 

  3. Wong RJ, Aguilar M, Cheung R, Perumpail RB, Harrison SA, Younossi ZM, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 2015;148(3):547–55. https://doi.org/10.1053/j.gastro.2014.11.039.

    Article  PubMed  Google Scholar 

  4. McCormack L, Dutkowski P, El-Badry AM, Clavien P-A. Liver transplantation using fatty livers: always feasible? J Hepatol. 2011;54(5):1055–62. https://doi.org/10.1016/j.jhep.2010.11.004.

    Article  PubMed  Google Scholar 

  5. Hijmans BS, Grefhorst A, Oosterveer MH, Groen AK. Zonation of glucose and fatty acid metabolism in the liver: mechanism and metabolic consequences. Biochimie. 2014;96:121–9. https://doi.org/10.1016/j.biochi.2013.06.007.

    Article  CAS  PubMed  Google Scholar 

  6. Schleicher J, Tokarski C, Marbach E, Matz-Soja M, Zellmer S, Gebhardt R, et al. Zonation of hepatic fatty acid metabolism - the diversity of its regulation and the benefit of modeling. Biochim Biophys Acta. 2015;1851(5):641–56. https://doi.org/10.1016/j.bbalip.2015.02.004.

    Article  CAS  PubMed  Google Scholar 

  7. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343–51. https://doi.org/10.1172/JCI23621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology. 2010;52(2):774–88. https://doi.org/10.1002/hep.23719.

    Article  CAS  PubMed  Google Scholar 

  9. de Vries JE, Vork MM, Roemen TH, de Jong YF, Cleutjens JP, van der Vusse GJ, et al. Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res. 1997;38(7):1384–94.

    PubMed  Google Scholar 

  10. Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY. Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes. 2001;50(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  11. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A. 2003;100(6):3077–82. https://doi.org/10.1073/pnas.0630588100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology. 2006;147(2):943–51. https://doi.org/10.1210/en.2005-0570.

    Article  CAS  PubMed  Google Scholar 

  13. Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001;50(8):1771–7. https://doi.org/10.2337/diabetes.50.8.1771.

    Article  CAS  PubMed  Google Scholar 

  14. Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 2014;146(3):726–35. https://doi.org/10.1053/j.gastro.2013.11.049.

    Article  CAS  PubMed  Google Scholar 

  15. Debois D, Bralet MP, Le Naour F, Brunelle A, Laprevote O. In situ lipidomic analysis of nonalcoholic fatty liver by cluster TOF-SIMS imaging. Anal Chem. 2009;81(8):2823–31. https://doi.org/10.1021/ac900045m.

    Article  CAS  PubMed  Google Scholar 

  16. Wattacheril J, Seeley EH, Angel P, Chen H, Bowen BP, Lanciault C, et al. Differential intrahepatic phospholipid zonation in simple steatosis and nonalcoholic steatohepatitis. PLoS One. 2013;8(2):e57165. https://doi.org/10.1371/journal.pone.0057165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46(4):1081–90. https://doi.org/10.1002/hep.21763.

    Article  CAS  PubMed  Google Scholar 

  18. Hall Z, Bond NJ, Ashmore T, Sanders F, Ament Z, Wang X, et al. Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology. 2017;65(4):1165–80. https://doi.org/10.1002/hep.28953.

    Article  CAS  PubMed  Google Scholar 

  19. Hall Z, Chu Y, Griffin JL. Liquid extraction surface analysis mass spectrometry method for identifying the presence and severity of nonalcoholic fatty liver disease. Anal Chem. 2017;89(9):5161–70. https://doi.org/10.1021/acs.analchem.7b01097.

    Article  CAS  PubMed  Google Scholar 

  20. Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev. 2013;113(4):2309–42. https://doi.org/10.1021/cr3004295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chaurand P. Imaging mass spectrometry of thin tissue sections: a decade of collective efforts. J Proteome. 2012;75(16):4883–92. https://doi.org/10.1016/j.jprot.2012.04.005.

    Article  CAS  Google Scholar 

  22. McDonnell LA, Heeren RM. Imaging mass spectrometry. Mass Spectrom Rev. 2007;26(4):606–43. https://doi.org/10.1002/mas.20124.

    Article  CAS  PubMed  Google Scholar 

  23. Scupakova K, Soons Z, Ertaylan G, Pierzchalski KA, Eijkel GB, Ellis SR, et al. Spatial systems lipidomics reveals nonalcoholic fatty liver disease heterogeneity. Anal Chem. 2018. https://doi.org/10.1021/acs.analchem.7b05215.

  24. Nishikawa K, Hashimoto M, Itoh Y, Hiroi S, Kusai A, Hirata F, et al. Detection of changes in the structure and distribution map of triacylglycerol in fatty liver model by MALDI-SpiralTOF. FEBS Open Bio. 2014;4:179–84. https://doi.org/10.1016/j.fob.2014.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dufresne M, Masson JF, Chaurand P. Sodium-doped gold-assisted laser desorption ionization for enhanced imaging mass spectrometry of triacylglycerols from thin tissue sections. Anal Chem. 2016;88(11):6018–25. https://doi.org/10.1021/acs.analchem.6b01141.

    Article  CAS  PubMed  Google Scholar 

  26. Hamilton LK, Dufresne M, Joppe SE, Petryszyn S, Aumont A, Calon F, et al. Aberrant lipid metabolism in the forebrain niche suppresses adult neural stem cell proliferation in an animal model of Alzheimer’s disease. Cell Stem Cell. 2015;17(4):397–411. https://doi.org/10.1016/j.stem.2015.08.001.

    Article  CAS  PubMed  Google Scholar 

  27. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21. https://doi.org/10.1002/hep.20701.

    Article  PubMed  Google Scholar 

  28. Bemis KD, Harry A, Eberlin LS, Ferreira C, van de Ven SM, Mallick P, et al. Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments. Bioinformatics. 2015;31(14):2418–20. https://doi.org/10.1093/bioinformatics/btv146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alexandrov T, Kobarg JH. Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering. Bioinformatics. 2011;27(13):i230–8. https://doi.org/10.1093/bioinformatics/btr246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A. 2002;99(10):6567–72. https://doi.org/10.1073/pnas.082099299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chalasani N, Wilson L, Kleiner DE, Cummings OW, Brunt EM, Unalp A, et al. Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non-alcoholic fatty liver disease. J Hepatol. 2008;48(5):829–34. https://doi.org/10.1016/j.jhep.2008.01.016.

    Article  PubMed  PubMed Central  Google Scholar 

  32. McCormack L, Petrowsky H, Jochum W, Furrer K, Clavien P-A. Hepatic steatosis is a risk factor for postoperative complications after major hepatectomy: a matched case-control study. Ann Surg. 2007;245(6):923–30. https://doi.org/10.1097/01.sla.0000251747.80025.b7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chu MJ, Dare AJ, Phillips AR, Bartlett AS. Donor hepatic steatosis and outcome after liver transplantation: a systematic review. J Gastrointest Surg. 2015;19(9):1713–24. https://doi.org/10.1007/s11605-015-2832-1.

    Article  PubMed  Google Scholar 

  34. Peralta C, Jiménez-Castro MB, Gracia-Sancho J. Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J Hepatol. 2013;59(5):1094–106. https://doi.org/10.1016/j.jhep.2013.06.017.

    Article  PubMed  Google Scholar 

  35. Leamy AK, Egnatchik RA, Young JD. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res. 2013;52(1):165–74. https://doi.org/10.1016/j.plipres.2012.10.004.

    Article  CAS  PubMed  Google Scholar 

  36. Luukkonen PK, Zhou Y, Sädevirta S, Leivonen M, Arola J, Orešič M, et al. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J Hepatol. 2016;64(5):1167–75. https://doi.org/10.1016/j.jhep.2016.01.002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support of Stephanie Petrillo and Abdellatif Amri for technical support, the MUHC Liver Disease Biobank for all human specimens, and the patients who consented to providing samples to the Biobank, with whose support of this study would not have been possible.

Funding

This publication was supported by National Cancer Institute of the National Institutes of Health under award number R01CA198103 and by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierre Chaurand or Peter Metrakos.

Ethics declarations

Informed consent was obtained from all patients through the McGill University Health Center Liver Disease Biobank. The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki and was approved by the research ethics board of the McGill University Health Centre.

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 992 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alamri, H., Patterson, N.H., Yang, E. et al. Mapping the triglyceride distribution in NAFLD human liver by MALDI imaging mass spectrometry reveals molecular differences in micro and macro steatosis. Anal Bioanal Chem 411, 885–894 (2019). https://doi.org/10.1007/s00216-018-1506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1506-8

Keywords

Navigation