Skip to main content
Log in

Adaptation and improvement of an elemental mapping method for lithium ion battery electrodes and separators by means of laser ablation-inductively coupled plasma-mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was applied to previously aged carbonaceous anodes from lithium ion batteries (LIBs). The electrodes were treated by cyclic aging in a lithium ion cell set-up with LiNi0.5Mn1,5O4 (LNMO) cathodes and hard carbon (HC)/mesocarbon microbead (MCMB) anodes. An inhomogeneous transition metal deposition pattern could be induced by replacing the spacer in a standard coin cell set-up with a washer. The inhomogeneity pattern matched the dimension of the washer depicted by the hole in the center. These transition metal (TM) patterns were used to optimize higher lateral scanning speeds and frequencies on the spatial resolution of the mapping experiments using LA-ICP-MS. Higher scanning speeds had an observable influence on the resolution of the obtained image and an overall saving of 60% with regard to time and gas consumption could be achieved. Additionally, the optimized method was applied to the cathode and separator in order to visualize the distribution and deposition pattern, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nagaura T. Progress in batteries and solar cells, vol. 10. Brunswick, OH: JEC Press Inc; 1991.

    Google Scholar 

  2. Wagner R, Preschitschek N, Passerini S, Leker J, Winter M. Current research trends and prospects among the various materials and designs used in lithium-based batteries. J Appl Electrochem. 2013;43:481–96. https://doi.org/10.1007/s10800-013-0533-6.

    Article  CAS  Google Scholar 

  3. Schmuch R, Wagner R, Hörpel G, Placke T, Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy. 2018;3:267–78. https://doi.org/10.1038/s41560-018-0107-2.

    Article  CAS  Google Scholar 

  4. Patry G, Romagny A, Martinet S, Froelich D. Cost modeling of lithium-ion battery cells for automotive applications. Energy Sci Eng. 2015;3:71–82. https://doi.org/10.1002/ese3.47.

    Article  Google Scholar 

  5. Armand M, Tarascon JM. Building better batteries. Nature. 2008;451:652–7. https://doi.org/10.1038/451652a.

    Article  CAS  PubMed  Google Scholar 

  6. Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev. 2004;104:4245–69. https://doi.org/10.1021/cr020730k.

    Article  CAS  PubMed  Google Scholar 

  7. Placke T, Kloepsch R, Dühnen S, Winter M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J Solid State Electrochem. 2017;21:1939–64. https://doi.org/10.1007/s10008-017-3610-7.

    Article  CAS  Google Scholar 

  8. Fichtner M. Komplexhydride, Metallfluoride: Konversionsmaterialien für die Energiespeicherung. Chemie Unserer Zeit. 2013;47:230–8. https://doi.org/10.1002/ciuz.201300604.

    Article  CAS  Google Scholar 

  9. He P, Yu H, Li D, Zhou H. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem. 2012;22:3680. https://doi.org/10.1039/c2jm14305d.

    Article  CAS  Google Scholar 

  10. Meister P, Jia H, Li J, Kloepsch R, Winter M, Placke T. Best practice: performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency. Chem Mater. 2016;28:7203–17. https://doi.org/10.1021/acs.chemmater.6b02895.

    Article  CAS  Google Scholar 

  11. Zhang SS, Jow TR, Amine K, Henriksen GL. LiPF6–EC–EMC electrolyte for li-ion battery. J Power Sources. 2002;107:18–23. https://doi.org/10.1016/S0378-7753(01)00968-5.

    Article  CAS  Google Scholar 

  12. Schmitz RW, Murmann P, Schmitz R, Müller R, Krämer L, Kasnatscheew J, et al. Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: systematic electrochemical characterization and detailed analysis by spectroscopic methods. Prog Solid State Chem. 2014;42:65–84. https://doi.org/10.1016/j.progsolidstchem.2014.04.003.

    Article  CAS  Google Scholar 

  13. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev. 2004;104:4303–417. https://doi.org/10.1021/cr030203g.

    Article  CAS  PubMed  Google Scholar 

  14. Amereller M, Schedlbauer T, Moosbauer D, Schreiner C, Stock C, Wudy F, et al. Electrolytes for lithium and lithium ion batteries: from synthesis of novel lithium borates and ionic liquids to development of novel measurement methods. Prog Solid State Chem. 2014;42:39–56. https://doi.org/10.1016/j.progsolidstchem.2014.04.001.

    Article  CAS  Google Scholar 

  15. Nowak S, Winter M. Elemental analysis of lithium ion batteries. J Anal At Spectrom. 2017;32:1833–47. https://doi.org/10.1039/C7JA00073A.

    Article  CAS  Google Scholar 

  16. Kohs W, Santner HJ, Hofer F, Schröttner H, Doninger J, Barsukov I, et al. A study on electrolyte interactions with graphite anodes exhibiting structures with various amounts of rhombohedral phase. J Power Sources. 2003;119–121:528–37. https://doi.org/10.1016/S0378-7753(03)00278-7.

    Article  CAS  Google Scholar 

  17. Agubra V, Fergus J. Lithium ion battery anode aging mechanisms. Materials (Basel). 2013;6:1310–25. https://doi.org/10.3390/ma6041310.

    Article  CAS  Google Scholar 

  18. Winter M. The solid electrolyte interphase—the most important and the least understood solid electrolyte in rechargeable li batteries. Z Phys Chem. 2009;223:1395–406. https://doi.org/10.1524/zpch.2009.6086.

    Article  CAS  Google Scholar 

  19. Grützke M, Kraft V, Hoffmann B, Klamor S, Diekmann J, Kwade A, et al. Aging investigations of a lithium-ion battery electrolyte from a field-tested hybrid electric vehicle. J Power Sources. 2015;273:83–8. https://doi.org/10.1016/j.jpowsour.2014.09.064.

    Article  CAS  Google Scholar 

  20. Shin H, Park J, Sastry AM, Lu W. Degradation of the solid electrolyte interphase induced by the deposition of manganese ions. J Power Sources. 2015;284:416–27. https://doi.org/10.1016/j.jpowsour.2015.03.039.

    Article  CAS  Google Scholar 

  21. Vetter J, Novák P, Wagner MR, Veit C, Möller KC, Besenhard JO, et al. Ageing mechanisms in lithium-ion batteries. J Power Sources. 2005;147:269–81. https://doi.org/10.1016/j.jpowsour.2005.01.006.

    Article  CAS  Google Scholar 

  22. Evertz M, Horsthemke F, Kasnatscheew J, Börner M, Winter M, Nowak S. Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique. J Power Sources. 2016;329:364–71. https://doi.org/10.1016/j.jpowsour.2016.08.099.

    Article  CAS  Google Scholar 

  23. Pieczonka NPW, Liu Z, Lu P, Olson KL, Moote J, Powell BR, et al. Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J Phys Chem C. 2013;117:15947–57. https://doi.org/10.1021/jp405158m.

    Article  CAS  Google Scholar 

  24. Dong HJ, Shin YJ, Oh SM. Dissolution of spinel oxides and capacity losses in 4 V. J Electrochem Soc. 1996;143:2204–11. https://doi.org/10.1149/1.1836981.

    Article  Google Scholar 

  25. Schwieters T, Evertz M, Mense M, Winter M, Nowak S. Lithium loss in the solid electrolyte interphase: Lithium quantification of aged lithium ion battery graphite electrodes by means of laser ablation-inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectroscopy. J Power Sources. 2017;356:47–55. https://doi.org/10.1016/j.jpowsour.2017.04.078.

    Article  CAS  Google Scholar 

  26. Schwieters T, Evertz M, Fengler A, Börner M, Dagger T, Stenzel Y, et al. Visualizing elemental deposition patterns on carbonaceous anodes from lithium ion batteries: a laser ablation-inductively coupled plasma-mass spectrometry study on factors influencing the deposition of lithium, nickel, manganese and cobalt after dissolution. J Power Sources. 2018;380:194–201. https://doi.org/10.1016/j.jpowsour.2018.01.088.

    Article  CAS  Google Scholar 

  27. Evertz M, Schwieters T, Börner M, Winter M, Nowak S. Matrix-matched standards for the quantification of elemental lithium ion battery degradation products deposited on carbonaceous negative electrodes using pulsed-glow discharge-sector field-mass spectrometry. J Anal At Spectrom. 2017;32:1862–7. https://doi.org/10.1039/c7ja00129k.

    Article  CAS  Google Scholar 

  28. Russo RE, Mao X, Mao SS. Peer reviewed: the physics of laser ablation in microchemical analysis. Anal Chem. 2002;74:70A–7A. https://doi.org/10.1021/ac0219445.

    Article  CAS  PubMed  Google Scholar 

  29. Börner M, Horsthemke F, Kollmer F, Haseloff S, Friesen A, Niehoff P, et al. Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes. J Power Sources. 2016;335:45–55. https://doi.org/10.1016/j.jpowsour.2016.09.071.

    Article  CAS  Google Scholar 

  30. Kominato A, Yasukawa E, Sato N, Ijuuin T, Asahina H, Mori S. Analysis of surface films on lithium in various organic electrolytes. J Power Sources. 1997;68:471–5. https://doi.org/10.1016/S0378-7753(97)02592-5.

    Article  CAS  Google Scholar 

  31. Peled E, Bar Tow D, Merson A, Gladkich A, Burstein L, Golodnitsky D. Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J Power Sources. 2001;97–98:52–7. https://doi.org/10.1016/S0378-7753(01)00505-5.

    Article  Google Scholar 

  32. Pozebon D, Scheffler GL, Dressler VL, Nunes MAG. Review of the applications of laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) to the analysis of biological samples. J Anal At Spectrom. 2014;29:2204–28. https://doi.org/10.1039/C4JA00250D.

    Article  CAS  Google Scholar 

  33. Koch J, Günther D. Review of the state-of-the-art of laser ablation-inductively coupled plasma mass spectrometry. Appl Spectrosc. 2011;65:155–62. https://doi.org/10.1366/11-06255.

    Article  CAS  PubMed  Google Scholar 

  34. Chen L, Liu Y, Hu Z, Gao S, Zong K, Chen H. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%. Chem Geol. 2011;284:283–95. https://doi.org/10.1016/j.chemgeo.2011.03.007.

    Article  CAS  Google Scholar 

  35. Günther D, Hattendorf B. Solid sample analysis using laser ablation-inductively coupled plasma mass spectrometry. TrAC Trends Anal Chem. 2005;24:255–65. https://doi.org/10.1016/j.trac.2004.11.017.

    Article  CAS  Google Scholar 

Download references

Funding

The authors wish to thank the German Federal Ministry of Education and Research (BMBF) for funding this work in the project “Elektrolytlabor-4E” (03X4632) and the Ministry of Economic Affairs in North Rhine-Westphalia for funding the project “GrEEn” (W044A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Nowak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Elemental and Molecular Imaging by LA-ICP-MS with guest editor Beatriz Fernández García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harte, P., Evertz, M., Schwieters, T. et al. Adaptation and improvement of an elemental mapping method for lithium ion battery electrodes and separators by means of laser ablation-inductively coupled plasma-mass spectrometry. Anal Bioanal Chem 411, 581–589 (2019). https://doi.org/10.1007/s00216-018-1351-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1351-9

Keywords

Navigation