Skip to main content
Log in

Electrochemical biosensing of galactose based on carbon materials: graphene versus multi-walled carbon nanotubes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, two enzyme electrodes based on graphene (GR), Co3O4 nanoparticles and chitosan (CS) or multi-walled carbon nanotubes (MWCNTs), Co3O4 nanoparticles, and CS, were fabricated as novel biosensing platforms for galactose determination, and their performances were compared. Galactose oxidase (GaOx) was immobilized onto the electrode surfaces by crosslinking with glutaraldehyde. Optimum working conditions of the biosensors were investigated and the analytical performance of the biosensors was compared with respect to detection limit, linearity, repeatability, and stability. The MWCNTs-based galactose biosensor provided about 1.6-fold higher sensitivity than its graphene counterpart. Moreover, the linear working range and detection limit of the MWCNTs-based galactose biosensor was superior to the graphene-modified biosensor. The successful application of the purposed biosensors for galactose biosensing in human serum samples was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F. Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed. 2010;49:2114–38.

    Article  CAS  Google Scholar 

  2. Wang J. Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta. 2012;177:245–70.

    Article  CAS  Google Scholar 

  3. Terzi F, Pelliciari J, Zanardi C, Pigani L, Viinikanoja A, Lukkari J, et al. Graphene-modified electrode. Determination of hydrogen peroxide at high concentrations. Anal Bioanal Chem. 2013;405:3579–86.

    Article  CAS  Google Scholar 

  4. Pérez-López B, Merkoci A. Carbon nanotubes and graphene in analytical sciences. Microchim Acta. 2012;179(1-2):1–16.

    Article  Google Scholar 

  5. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. Recent advances in graphene-based biosensors. Biosens Bioelectron. 2011;26(12):4637–48.

    Article  CAS  Google Scholar 

  6. Salimi A, Hallaj R, Soltanian S. Fabrication of a sensitive cholesterol biosensor based on cobalt-oxide nanostructures electrodeposited onto glassy carbon electrode. Electroanalysis. 2009;21:2693–700.

    Article  CAS  Google Scholar 

  7. Devi R, Yadav S, Nehra R, Yadav S, Pundir CS. Electrochemical biosensor based on gold coated iron nanoparticles/chitosan composite bound xanthine oxidase for detection of xanthine in fish meat. J Food Eng. 2013;115:207–14.

    Article  CAS  Google Scholar 

  8. Jang HD, Kim SK, Chang H, Roh KM, Choi JW, Huang J. A glucose biosensor based on TiO2–graphene composite. Biosens Bioelectron. 2012;38(1):184–8.

    Article  CAS  Google Scholar 

  9. Zhou K, Zhu Y, Yang X, Li C. Preparation and application of mediator-free H2O2 biosensors of graphene-Fe3O4 composites. Electroanalysis. 2011;23(4):862–9.

    Article  CAS  Google Scholar 

  10. Wang G, Tan X, Zhou Q, Liu Y, Wang M, Yang L. Synthesis of highly dispersed zinc oxide nanoparticles on carboxylic graphene for development a sensitive acetylcholinesterase biosensor. Sensors Actuators B Chem. 2014;190:730–6.

    Article  CAS  Google Scholar 

  11. Teymourian H, Salimi A, Hallaj R. Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: fabrication of integrated dehydrogenase-based lactate biosensor. Biosens Bioelectron. 2012;33(1):60–8.

    Article  CAS  Google Scholar 

  12. Numnuam A, Thavarungkul P, Kanatharana P. An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles. Anal Bioanal Chem. 2014;406:3763–72.

    Article  CAS  Google Scholar 

  13. Kaçar C, Dalkiran B, Erden PE, Kilic E. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode. Appl Surf Sci. 2014;311:139–46.

    Article  Google Scholar 

  14. Charmantray F, Touisni N, Hecquet L, Mousty C. Amperometric biosensor based on galactose oxidase immobilized in clay matrix. Electroanalysis. 2013;25(3):630–5.

    Article  CAS  Google Scholar 

  15. Berry GT, Hunter JV, Wang Z, Dreha S, Mazur AD, Brooks G, et al. In vivo evidence of brain galactitol accumulation in an infant with galactosemia and encephalopathy. J Pediatr. 2001;138:260–2.

    Article  CAS  Google Scholar 

  16. Khun K, Ibupoto ZH, Nur O, Willander M. Development of galactose biosensor based on functionalized ZnO nanorods with galactose oxidase journal of sensors volume. J Sens. 2012. doi:10.1155/2012/696247.

    Google Scholar 

  17. Kanyong P, Pemberton RM, Jackson SK, Hart JP. Development of an amperometric screen-printed galactose biosensor for serum analysis. Anal Biochem. 2013;435:114–9.

    Article  CAS  Google Scholar 

  18. Sharma SK, Singhal R, Malhotra BD, Sehgal N, Kumar A. Langmuir–Blodgett film based biosensor for estimation of galactose in milk. Electrochim Acta. 2004;49:2479–85.

    Article  CAS  Google Scholar 

  19. Lee KN, Lee Y, Son Y. Enhanced sensitivity of a galactose biosensor fabricated with a bundle of conducting polymer microtubules. Electroanalysis. 2010;23(9):2125–30.

    Article  Google Scholar 

  20. Sharma SK, Singh SK, Sehgal N, Kumar A. Biostrip technique for detection of galactose in dairy foods. Food Chem. 2004;88:299–303.

    Article  CAS  Google Scholar 

  21. Hansen SA. Thin-layer chromatographic method for the identification of mono-, di-and trisaccharides. J Chromatogr. 1975;107(1):224–6.

    Article  CAS  Google Scholar 

  22. Kurtz KS, Crouch SR. Design and optimization of a flow-injection system for enzymatic determination of galactose. Anal Chim Acta. 1991;254(1):201–8.

    Article  CAS  Google Scholar 

  23. Cataldi TRI, Angelotti M, Bianco G. Determination of mono-and disaccharides in milk and milk products by high-performance anion-exchange chromatography with pulsed amperometric detection. Anal Chim Acta. 2003;485:43–9.

    Article  CAS  Google Scholar 

  24. Henderson JM, Fales FW. Continuous-flow fluorometry of low galactose concentrations in blood or plasma. Clin Chem. 1980;26(2):282–5.

    CAS  Google Scholar 

  25. Xie J, Chen C, Zhou Y, Fei J, Ding Y, Zhao J. A Galactose oxidase biosensor based on graphene composite film for the determination of galactose and dihydroxyacetone. Electroanalysis. 2015;27:1–7.

    Article  CAS  Google Scholar 

  26. Tkac J, Whittaker JW, Ruzgas T. The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosens Bioelectron. 2007;22(8):1820–4.

    Article  CAS  Google Scholar 

  27. Şenel M, Bozgeyik İ, Çevik E, Abasıyanık MF. A novel amperometric galactose biosensor based on galactose oxidase-poly (N-glycidylpyrrole-co-pyrrole). Synth Met. 2011;161(5):440–4.

    Google Scholar 

  28. Whittaker MM, Ballou DP, Whittaker JW. Kinetic isotope effects as probes of the mechanism of galactose oxidase. Biochemistry. 1998;37(23):8426–36.

    Article  CAS  Google Scholar 

  29. Tkac J, Gemeiner P, Šturdík E. Rapid and sensitive galactose oxidase-peroxidase biosensor for galactose detection with prolonged stability. Biotechnol Tech. 1999;13:931–6.

    Article  CAS  Google Scholar 

  30. Szabo EE, Adanyi N, Varadi M. Application of biosensor for monitoring galactose content. Biosens Bioelectron. 1996;11(10):1051–8.

    Article  CAS  Google Scholar 

  31. Kanyong P, Hughes G, Pemberton RM, Jackson SK, Hart JP. Amperometric screen-printed galactose biosensor for cell toxicity applications. Anal Lett. 2015;49(2):236–44.

    Article  Google Scholar 

  32. Zheng D, Vashist SK, Dykas MM, Saha S, Al-Rubeaan K, Lam E, et al. Luong and fwu-shan sheu, graphene versus multi-walled carbon nanotubes for electrochemical glucose biosensing. Materials. 2013;6:1011–27.

    Article  CAS  Google Scholar 

  33. You JM, Kim D, Jeon S. Electrocatalytic reduction of H2O2 by Pt nanoparticles covalently bonded to thiolated carbon nanostructures. Electrochim Acta. 2012;65:288–93.

    Article  CAS  Google Scholar 

  34. Liu C, Alwarappan S, Chen Z, Kong X, Li CZ. Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens Bioelectron. 2010;25:1829–33.

    Article  CAS  Google Scholar 

  35. Dalkiran B, Kacar C, Erden PE, Kilic E. Amperometric xanthine biosensors based on chitosan-Co3O4 multiwall carbon nanotube modified glassy carbon electrode. Sensors Actuators B Chem. 2014;200:83–91.

    Article  CAS  Google Scholar 

  36. Dong XC, Hang X, Wang XW, Huang YX, Chan-Park MB, Zhang H, et al. 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano. 2012;6(4):3206–13.

    Article  CAS  Google Scholar 

  37. Welch CM, Banks CE, Simm AO, Compton RG. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem. 2005;382(1):12–21.

    Article  CAS  Google Scholar 

  38. Njagi J, Andreescu S. Stable enzyme biosensors based on chemically synthesized Au–polypyrrole nanocomposites. Biosens Bioelectron. 2007;23:168–75.

    Article  CAS  Google Scholar 

  39. Zhiguo G, Shuping Y, Zaijun L, Xiulan S, Guangli W, Yinjun F, et al. An ultrasensitive hydrogen peroxide biosensor based on electrocatalytic synergy of graphene–gold nanocomposite, CdTe–CdS core–shell quantum dots and gold nanoparticles. Anal Chim Acta. 2011;701(1):75–80.

    Article  Google Scholar 

  40. Vega FA, Núñez CG, Weigel B, Hitzmann B, Ricci JCD. On-line monitoring of galactoside conjugates and glycerol by flow injection analysis. Anal Chim Acta. 1998;373:57–62.

    Article  Google Scholar 

  41. Jia NQ, Zhang ZR, Zhu JZ, Zhang GX. A Galactose biosensor based on the microfabricated thin film electrode. Anal Lett. 2003;36:2095–106.

    Article  CAS  Google Scholar 

  42. Kan J, Chen C, Jing G. The galactose biosensor based on microporous polyacrylonitrile. Biocatal Biotransfor. 2005;23:439--44.

  43. Çevik E, Senel M, Abasıyanık MF. Construction of biosensor for determination of galactose with galactose oxidase immobilized on polymeric mediator contains ferrocene. Curr Appl Phys. 2010;10:1313–6.

    Article  Google Scholar 

  44. Sung WJ, Bae YH. Glucose oxidase, lactate oxidase, and galactose oxidase enzyme electrode based on polypyrrole with polyanion/PEG/enzyme conjugate dopan. Sensors Actuators B Chem. 2006;114:164–9.

    Article  CAS  Google Scholar 

  45. Wen G, Zhang Y, Zhou Y, Shuang S, Dong C, Choi MMF. Biosensors for determination of galactose with galactose oxidase immobilized on eggshell membrane. Anal. Lett. 2005;38:1519--29.

  46. Gülce H, Ataman I, Yildiz A. A new amperometric enzyme electrode for galactose determination. Enzym Microb Technol. 2002;30(1):41–4.

    Article  Google Scholar 

  47. Wang Y, Zhu J, Zhu R, Zhu Z, Lai Z, Chen Z. Chitosan/Prussian blue-based biosensors. Meas Sci Technol. 2003;14:831–6.

    Article  CAS  Google Scholar 

  48. Peteu SF, Emerson D, Worden RM. A Clark-type oxidase enzyme-based amperometric microbiosensor for sensing glucose, galactose, or choline. Biosens Bioelectron. 1996;11:1059–71.

    Article  CAS  Google Scholar 

  49. Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG. Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes. Angew Chem Int Ed Engl. 2006;45(16):2533–7.

    Article  CAS  Google Scholar 

  50. Jurkschat K, Ji X, Crossley A, Compton RG, Banks CE. Super-washing does not leave single walled carbon nanotubes iron-free. Analyst. 2007;132(1):21–3.

    Article  CAS  Google Scholar 

  51. Hoffmann B, Seitz D, Mencke A, Kokott A, Ziegler G. Glutaraldehyde and oxidised dextran as crosslinker reagents for chitosan-based scaffolds for cartilage tissue engineering. J Mater Sci: Mater M. 2009;20(7):1495–503.

    CAS  Google Scholar 

  52. Hung TC, Giridhar R, Chiou SH, Wu WT. Binary immobilization of Candida rugosa lipase on chitosan. J Mol Catal B–Enzym. 2003;26:69–78.

    Article  CAS  Google Scholar 

  53. Xu H, Dai H, Chen G. Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Talanta. 2010;81:334–8.

    Article  CAS  Google Scholar 

  54. Chávez-Servín JL, Castellote AI, López-Sabater MC. Analysis of mono- and disaccharides in milk-based formulae by high-performance liquid chromatography with refractive index detection. J Chromatogr A. 2004;1043:211–5.

    Article  Google Scholar 

  55. Ning C, Segal S. Plasma galactose and galactitol concentration patients with galactose-1-phosphate uridyltransferase deficiency galactosemia: determination by gas chromatography/mass spectrometry. Metabolism. 2000;49:1460–6.

    Article  CAS  Google Scholar 

  56. Çete S, Yaşar A, Arslan F. An amperometric biosensor for uric acid determination prepared from uricase immobilized in polypyrrole film. Artif Cell Nanomed Biotechnol. 2006;34:367–80.

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of Ankara University Research Fund (Project No: 13L4240002) and a scholarship for B.DALKIRAN of The Scientific and Technological Research Council of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esma Kılıç.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalkıran, B., Erden, P.E. & Kılıç, E. Electrochemical biosensing of galactose based on carbon materials: graphene versus multi-walled carbon nanotubes. Anal Bioanal Chem 408, 4329–4339 (2016). https://doi.org/10.1007/s00216-016-9532-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9532-x

Keywords

Navigation