Skip to main content
Log in

Gold nanoislands chip for laser desorption/ionization (LDI) mass spectrometry

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Gold nanoislands chip were developed as a solid matrix for the analysis of small molecules using laser desorption/ionization time-of-flight (LDIToF) mass spectrometry substituting the organic matrices which usually produce strong noise at low massto- charge ratio range (m/z<500). Gold nanoislands were simply prepared by (1) deposition of gold layer on highly P-doped silicon substrate followed by (2) heating. Physical properties of the gold nanoislands were analyzed by scanning electron microscope (SEM), atomic force microscopy (AFM) analysis to characterize the morphology, diameter, thickness, and surface density of the nanoislands which were comparatively analyzed in conjunction with LDI-ToF mass spectrometry. In this work, optimal size of the nanoislands were selected for LDI-ToF mass spectrometry, and gold nanoislands chip were applied to the quantitative and simultaneous detection of small analytes (amino acids) with various chemical and physical properties (polar, nonpolar, acidic, and basic).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karas, M., Bachmann, D., Bahr, U.E. & Hillenkamp, F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Process. 78, 53–68 (1987).

    Article  CAS  Google Scholar 

  2. Karas, M., Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal. Chem. 60, 2299–2301 (1988).

    Article  CAS  Google Scholar 

  3. Kim, J.I., Park, J.M., Noh, J.Y., Kang, M.J. & Pyun, J.C. Matrix-assisted laser desorption/ionization timeof-flight mass spectrometry of small volatile molecules using a parylene-matrix chip. Rapid Commun. Mass Spectrom. 28, 2301–2306 (2014).

    Article  CAS  Google Scholar 

  4. Kim, J.I., Park, J.M., Kang, M.J. & Pyun, J.C. Parylenematrix chip for small molecule analysis using matrixassisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 28, 274–280 (2014).

    Article  CAS  Google Scholar 

  5. Kang, M.J. et al. Nanowire-assisted laser desorption and ionization mass spectrometry for quantitative analysis of small molecules. Rapid Commun. Mass Spectrom. 19, 3166–3170 (2005).

    Article  CAS  Google Scholar 

  6. Kim, J.I., Park, J.M., Hwang, S.J., Kang, M.J. & Pyun, J.C. Top-down synthesized TiO2 nanowires as a solid matrix for surface-assisted laser desorption/ionization time-of-flight (SALDI-TOF) mass spectrometry. Anal. Chim. Acta 836, 53–60 (2014).

    Article  CAS  Google Scholar 

  7. Kim, J.I. et al. Nylon nanoweb with TiO2 nanoparticles as a solid matrix for matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 28, 2427–2436 (2014).

    Article  CAS  Google Scholar 

  8. Chiang, C.K., Chen, W.T. & Chang, H.T. Nanoparticlebased mass spectrometry for the analysis of biomolecules. Chem. Soc. Rev. 40, 1269–1281 (2011).

    Article  CAS  Google Scholar 

  9. Khanam, A., Tripathi, S.K., Roy, D. & Nasim, M. A facile and novel synthetic method for the preparation of hydroxyl capped fluorescent carbon nanoparticles. Colloids Surf. B. Biointerfaces 102, 63–69 (2013).

    Article  CAS  Google Scholar 

  10. Tanaka, K. et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153 (1988).

    Article  CAS  Google Scholar 

  11. Sherrod, S.D., Diaz, A.J., Russell, W.K., Cremer, P.S. & Russell, D.H. Silver nanoparticles as selective ionization probes for analysis of olefins by mass spectrometry. Anal. Chem. 80, 6796–6799 (2008).

    Article  CAS  Google Scholar 

  12. Watanabe, T., Kawasaki, H., Yonezawa, T. & Arakawa, R. Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles. J. Mass Spectrom 43, 1063–1071 (2008).

    Article  CAS  Google Scholar 

  13. Liu, Q., Shi, J. & Jiang, G. Application of graphene in analytical sample preparation. Trends Analyt. Chem. 37, 1–11 (2012).

    Article  Google Scholar 

  14. Min, Q., Zhang, X., Chen, X., Li, S. & Zhu, J.J. N-doped graphene: an alternative carbon-based matrix for highly efficient detection of small molecules by negative ion MALDI-TOF MS. Anal. Chem. 86, 9122–9130 (2014).

    Article  CAS  Google Scholar 

  15. Chen, W.T., Chiang, C.K., Lin, Y.W. & Chang, H.T. Quantification of captopril in urine through surfaceassisted laser desorption/ionization mass spectrometry using 4-mercaptobenzoic acid-capped gold nanoparticles as an internal standard. J. Am. Soc. Mass Spectrom. 21, 864–867 (2010).

    Article  CAS  Google Scholar 

  16. Kawasaki, H., Ozawa, T., Hisatomi, H. & Arakawa, R. Platinum vapor deposition surface-assisted laser desorption/ ionization for imaging mass spectrometry of small molecules. Rapid Commun. Mass Spectrom. 26, 1849–1858 (2012).

    Article  CAS  Google Scholar 

  17. Pham, X.H. et al. Glucose detection using 4-mercaptophenyl boronic acid-incorporated silver nanoparticlesembedded silica-coated graphene oxide as a SERS substrate. BioChip J. 11, 46–56 (2017).

    Article  CAS  Google Scholar 

  18. Ye, S. & Oh, W.C. Novel Synthesis and Characterization of Pt-graphene/TiO2 Composite Designed for High Photonic Effect and Photocatalytic Activity under Visible Light. J. Korean Ceram. Soc. 54, 28–32 (2017).

    Article  CAS  Google Scholar 

  19. Li, X. et al. Synthesis and Photocatalytic Activity of TiO2/BiVO4 Layered Films under Visible Light Irradiation. J. Korean Ceram. Soc. 53, 665–669 (2016).

    Article  CAS  Google Scholar 

  20. Lee, M.G. & Jang, H.W. Photoactivities of Nanostructured a-Fe2O3 Anodes Prepared by Pulsed Electrodeposition. J. Korean Ceram. Soc. 53, 400–405 (2016).

    Article  CAS  Google Scholar 

  21. Nguyen, N.L.T., Kim, E.J., Chang, S.K. & Park, T.J. Sensitive detection of lead ions using sodium thiosulfate and surfactant-capped gold nanoparticles. BioChip J. 10, 65–73 (2016).

    Article  CAS  Google Scholar 

  22. Ly, N.H. & Joo, S.W. Hg(II) Raman sensor of poly-Llysine conformation change on gold nanoparticles. BioChip J. 8, 303–309 (2014).

    Article  Google Scholar 

  23. Li, Y., Jing, C., Zhang, L. & Long, Y.T. Resonance scattering particles as biological nanosensors in vitro and in vivo. Chem. Soc. Rev. 41, 632–642 (2012).

    Article  CAS  Google Scholar 

  24. Stewart, M.E. et al. Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008).

    Article  CAS  Google Scholar 

  25. Eustis, S. & El-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217 (2006).

    Article  CAS  Google Scholar 

  26. Daniel, M.C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004).

    Article  CAS  Google Scholar 

  27. Chen, C.Y., Hinman, S.S., Duan, J. & Cheng, Q. Nanoglassified, optically-active monolayer films of gold nanoparticles for in situ orthogonal detection by localized surface plasmon resonance and surface-assisted laser desorption/ionization-MS. Anal. Chem. 86, 11942–11945 (2014).

    Article  CAS  Google Scholar 

  28. Duan, J., Wang, H. & Cheng, Q. On-plate desalting and SALDI-MS analysis of peptides with hydrophobic silicate nanofilms on a gold substrate. Anal. Chem. 82, 9211–9220 (2010).

    Article  CAS  Google Scholar 

  29. Tsao, C.W. & Yang, Z.J. High sensitivity and high detection specificity of gold-nanoparticle-grafted nanostructured silicon mass spectrometry for glucose analysis. ACS Appl. Mater. Interfaces. 7, 22630–22637 (2015).

    Article  CAS  Google Scholar 

  30. Hinman, S.S., Chen, C.Y., Duan, J. & Cheng, Q. Calcinated gold nanoparticle arrays for on-chip, multiplexed and matrix-free mass spectrometric analysis of peptides and small molecules. Nanoscale 8, 1665–1675 (2016).

    Article  CAS  Google Scholar 

  31. Kawasaki, H. et al. Layer-by-layer self-assembled mutilayer films of gold nanoparticles for surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 80, 7524–7533 (2008).

    Article  CAS  Google Scholar 

  32. Nayak, R. & Knapp, D.R. Matrix-free LDI mass spectrometry platform using patterned nanostructured gold thin film. Anal. Chem. 82, 7772–7778 (2010).

    Article  CAS  Google Scholar 

  33. Jung, H.W. et al. A capacitive biosensor based on an interdigitated electrode with nanoislands. Anal. Chim. Acta 844, 27–34 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chul Pyun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, JY., Kim, JI., Chang, Y.W. et al. Gold nanoislands chip for laser desorption/ionization (LDI) mass spectrometry. BioChip J 11, 246–254 (2017). https://doi.org/10.1007/s13206-017-1310-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-017-1310-0

Keywords

Navigation