Skip to main content
Log in

Applicability of Montmorillonite Immobilized in Hydrogel for the Determination of Labile Cd, Pb, Mn, and Zn in Water Using Diffusive Gradient in Thin Films (DGT)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Diffusive gradient in thin films (DGT) is one of useful techniques regarding in situ metal speciation in water environment. It has attracted significant research interest aimed at finding new binding phases in order to diversify DGT application. In this study, montmorillonite (MMT), the natural clay mineral with high ion-exchange capacity and trace metal adsorbability, was immobilized in hydrogel and investigated for its applicability as a binding phase in the DGT technique. The structure of the new binding material before and after the acid treatment was characterized using X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Brunauer Emmet Teller (BET) specific surface area testing, and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The montmorillonite embedded in DGT (DGT-MMT) was tested for the determination of labile Cd, Pb, Mn, and Zn in standard solutions. Various parameters affecting the working performance of DGT-MMT including deployment period, pH, ionic strength, and complexing agent (EDTA) were examined. The results showed that after the acid treatment, most of trace metals such as Cd, Pb, Mn, and Zn in MMT were removed to levels of under the detection limits of the analytical instrument, while the major structure of MMT remained stable. The MMT K10 exhibited high adsorbability to all tested trace metals and Langmuir adsorption isotherm was considered the best fit. In each standard solution containing 20 μg L−1 of tested trace metal, it took only 6 h to recover 85.7–93.5% of labile Cd, Pb, Mn, and Zn by the DGT-MMT. Better working performance of the DGT-MMT was observed at pH, ionic strength, and complexing agent conditions similar to those found in natural water environments. Moreover, we found no significant difference in working efficiency between the new DGT-MMT and traditional DGT-Chelex100 techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdulbur-Alfakhoury, E., Van Zutphen, S., & Leermakers, M. (2019). Development of the diffusive gradients in thin films technique (DGT) for platinum (Pt), palladium (Pd), and rhodium (Rh) in natural waters. Talanta, 203, 34–48. https://doi.org/10.1016/J.TALANTA.2019.05.038.

    Article  CAS  Google Scholar 

  • Abollino, O., Giacomino, A., Malandrino, M., & Mentasti, E. (2008). Interaction of metal ions with montmorillonite and vermiculite. Applied Clay Science, 38, 227–236. https://doi.org/10.1016/J.CLAY.2007.04.002.

    Article  CAS  Google Scholar 

  • Alothman, Z. A. (2012). A review: fundamental aspects of silicate mesoporous materials. Materials, 5, 2874–2902. https://doi.org/10.3390/ma5122874.

    Article  CAS  Google Scholar 

  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Advances in Colloid and Interface Science, 140, 114–131. https://doi.org/10.1016/J.CIS.2007.12.008.

    Article  CAS  Google Scholar 

  • Bratkic, A., Klun, K., & Gao, Y. (2019). Mercury speciation in various aquatic systems using passive sampling technique of diffusive gradients in thin-film. Science of the Total Environment, 663, 297–306. https://doi.org/10.1016/J.SCITOTENV.2019.01.241.

    Article  CAS  Google Scholar 

  • Chang, L.-Y., Davison, W., Zhang, H., & Kelly, M. (1998). Performance characteristics for the measurement of Cs and Sr by diffusive gradients in thin films (DGT). Analytica Chimica Acta, 368, 243–253. https://doi.org/10.1016/S0003-2670(98)00215-3.

    Article  CAS  Google Scholar 

  • Colaco, C. D., Yabuki, L. N., Rolisola, A. M., Menegario, A. A., de Almeida, E., Suarez, C. A., et al. (2014). Determination of mercury in river water by diffusive gradients in thin films using P81 membrane as binding layer. Talanta, 129, 417–421. https://doi.org/10.1016/j.talanta.2014.05.025.

    Article  CAS  Google Scholar 

  • Davison, W., & Zhang, H. (1994). In situ speciation measurements of trace components in natural waters using thin-film gels. Nature, 367, 546–548.

    Article  CAS  Google Scholar 

  • Davison, W., Zhang, H., & Miller, S. (1994). Developing and applying new techniques for measuring steep chemical gradients of trace metals and inorganic ions at the sediment-water interface. Mineralogical Magazine, 58A, 215–216.

    Article  Google Scholar 

  • Divis, P., Szkandera, R., Brulík, L., Dočekalová, H., Matúš, P., & Bujdoš, M. (2009). Application of new resin gels for measuring mercury by diffusive gradients in a thin-films technique. Analytical Sciences, 25, 575–578. https://doi.org/10.2116/analsci.25.575.

    Article  CAS  Google Scholar 

  • Docekalova, H., & Divis, P. (2005). Application of diffusive gradient in thin films technique (DGT) to measurement of mercury in aquatic systems. Talanta, 65, 1174–1178. https://doi.org/10.1016/J.TALANTA.2004.08.054.

    Article  CAS  Google Scholar 

  • Doina, H., Maria, I., & Mirela, S. (2015). Evaluation of adsorption capacity of montmorillonite and aluminium-pillared clay for Pb2+, Cu2+ and Zn2+. Acta Chimica Slovenica, 62(4), 947–957.

  • Drozdzak, J., Leermakers, M., Gao, Y., Phrommavanh, V., & Descostes, M. (2015). Evaluation and application of diffusive gradients in thin films (DGT) technique using Chelex®-100, Metsorb™ and Diphonix® binding phases in uranium mining environments. Analytica Chimica Acta, 889, 71–81. https://doi.org/10.1016/J.ACA.2015.07.057.

    Article  CAS  Google Scholar 

  • Drozdzak, J., Leermakers, M., Gao, Y., Phrommavanh, V., & Descostes, M. (2016). Novel speciation method based on diffusive gradients in thin films for in situ measurement of uranium in the vicinity of the former uranium mining sites. Environmental Pollution, 214, 114–123. https://doi.org/10.1016/J.ENVPOL.2016.04.004.

    Article  CAS  Google Scholar 

  • Elzinga, E. J., & Sparks, D. L. (1999). Nickel sorption mechanisms in a pyrophyllite–montmorillonite mixture. Journal of Colloid and Interface Science, 213, 506–512. https://doi.org/10.1006/JCIS.1999.6161.

    Article  CAS  Google Scholar 

  • Fan, H., Sun, T., Li, W., Sui, D., Jin, S., & Lian, X. (2009). Sodium polyacrylate as a binding agent in diffusive gradients in thin-films technique for the measurement of Cu2+ and Cd2+ in waters. Talanta, 79(5), 1228–1232. https://doi.org/10.1016/j.talanta.2009.04.049.

    Article  CAS  Google Scholar 

  • Farias, M., Martinelli, M., & Rolim, G. K. (2011). Immobilized molybdenum acetylacetonate complex on montmorillonite K-10 as catalyst for epoxidation of vegetable oils. Applied Catalysis A: General, 403, 119–127. https://doi.org/10.1016/J.APCATA.2011.06.021.

    Article  CAS  Google Scholar 

  • Florence, T. M., Batley, G. E., & Benes, P. (1980). Chemical speciation in natural waters. Critical Reviews in Analytical Chemistry, 9(3), 219–226.

    Article  CAS  Google Scholar 

  • Florence, T. M., Morrison, G. M., & Stauber, J. L. (1992). Determination of trace element speciation and the role of speciation in aquatic toxicity. Science of the Total Environment, 125, 1–13. https://doi.org/10.1016/0048-9697(92)90377-5.

    Article  CAS  Google Scholar 

  • Frois, S. R., Grassi, M. T., Fernandes, T. C., Dos Santos Barreto, R. A., & Abate, G. (2011). Pré-concentração de Cr(III) e análise de especiação de cromo empregando montmorilonita saturada com íons potássio. Quimica Nova, 34, 462–467. https://doi.org/10.1590/S0100-40422011000300018.

    Article  CAS  Google Scholar 

  • Gao, Y., De Canck, E., Leermakers, M., Baeyens, W., & Van Der Voort, P. (2011). Synthesized mercaptopropyl nanoporous resins in DGT probes for determining dissolved mercury concentrations. Talanta, 87, 262–267. https://doi.org/10.1016/J.TALANTA.2011.10.012.

    Article  CAS  Google Scholar 

  • Gorny, J., Lesven, L., Billon, G., Dumoulin, D., Noiriel, C., Pirovano, C., et al. (2015). Determination of total arsenic using a novel Zn-ferrite binding gel for DGT techniques: application to the redox speciation of arsenic in river sediments. Talanta, 144, 890–898. https://doi.org/10.1016/J.TALANTA.2015.07.016.

    Article  CAS  Google Scholar 

  • Guan, D.-X., Williams, P. N., Xu, H.-C., Li, G., Luo, J., & Ma, L. Q. (2016). High-resolution measurement and mapping of tungstate in waters, soils and sediments using the low-disturbance DGT sampling technique. Journal of Hazardous Materials, 316, 69–76. https://doi.org/10.1016/J.JHAZMAT.2016.05.026.

    Article  CAS  Google Scholar 

  • Guo, W., Van Langenhove, K., Vandermarken, T., Denison, M. S., Elskens, M., Baeyens, W., et al. (2019). In situ measurement of estrogenic activity in various aquatic systems using organic diffusive gradients in thin-film coupled with ERE-CALUX bioassay. Environment International, 127, 13–20. https://doi.org/10.1016/J.ENVINT.2019.03.027.

    Article  CAS  Google Scholar 

  • Jiménez-Piedrahita, M., Altier, A., Cecilia, J., Rey-Castro, C., Galceran, J., & Puy, J. (2015). Influence of the settling of the resin beads on diffusion gradients in thin films measurements. Analytica Chimica Acta, 885, 148–155. https://doi.org/10.1016/J.ACA.2015.04.054.

    Article  Google Scholar 

  • Kenneth, R. H., Lee, C. E., Andreas, A., & Theodore, V. (1966). Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind. Eng. Chem. Fundamentals, 5(2), 212–223.

    Article  Google Scholar 

  • Komadel, P., & Madejova, J. (2013). Acid activation of clay minerals. Developments in Clay Science, 5, 385–409. https://doi.org/10.1016/B978-0-08-098258-8.00013-4.

    Article  CAS  Google Scholar 

  • Kraepiel, A. M. L., Keller, K., & Morel, F. M. M. (1999). A model for metal adsorption on montmorillonite. Journal of Colloid and Interface Science, 210, 43–54. https://doi.org/10.1006/JCIS.1998.5947.

    Article  CAS  Google Scholar 

  • Luko, K. S., Menegario, A. A., Suarez, C. A., Tafurt-Cardona, M., Pedrobom, J. H., Rolisola, A., et al. (2017). In situ determination of V(V) by diffusive gradients in thin films and inductively coupled plasma mass spectrometry techniques using amberlite IRA-410 resin as a binding layer. Analytica Chimica Acta, 950, 32–40. https://doi.org/10.1016/j.aca.2016.11.031.

    Article  CAS  Google Scholar 

  • Mobasherpour, I., Salahi, E., & Pazouki, M. (2012). Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: adsorption isotherm study. Arabian Journal of Chemistry, 5, 439–446. https://doi.org/10.1016/J.ARABJC.2010.12.022.

    Article  CAS  Google Scholar 

  • Mohan, D., & Chander, S. (2001). Single component and multi-component adsorption of metal ions by activated carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177, 183–196. https://doi.org/10.1016/S0927-7757(00)00670-1.

    Article  CAS  Google Scholar 

  • Neris, J. B., Luzardo, F. H. M., da Silva, E. G. P., & Velasco, F. G. (2019). Evaluation of adsorption processes of metal ions in multi-element aqueous systems by lignocellulosic adsorbents applying different isotherms: a critical review. Chemical Engineering Journal, 357, 404–420. https://doi.org/10.1016/J.CEJ.2018.09.125.

    Article  CAS  Google Scholar 

  • Panther, J. G., Stewart, R. R., Teasdale, P. R., Bennett, W. W., Welsh, D. T., & Zhao, H. (2013). Titanium dioxide-based DGT for measuring dissolved As(V), V(V), Sb(V), Mo(VI) and W(VI) in water. Talanta, 105, 80–86. https://doi.org/10.1016/J.TALANTA.2012.11.070.

    Article  CAS  Google Scholar 

  • Puy, J., Uribe, R., Mongin, S., Galceran, J., Cecília, J., Levy, J., et al. (2012). Lability criteria in diffusive gradients in thin films. The Journal of Physical Chemistry A, 116(25), 6564–6573.

    Article  CAS  Google Scholar 

  • Rolisola, A. M., Suarez, C. A., Menegario, A. A., Gastmans, D., Kiang, C. H., Colaco, C. D., et al. (2014). Speciation analysis of inorganic arsenic in river water by Amberlite IRA 910 resin immobilized in a polyacrylamide gel as a selective binding agent for As(V) in diffusive gradient thin film technique. Analyst, 139(17), 4373–4380. https://doi.org/10.1039/c4an00555d.

    Article  CAS  Google Scholar 

  • Sangi, M. R., Halstead, M. J., & Hunter, K. A. (2002). Use of the diffusion gradient thin film method to measure trace metals in fresh waters at low ionic strength. Analytica Chimica Acta, 456, 241–251. https://doi.org/10.1016/S0003-2670(02)00012-0.

    Article  CAS  Google Scholar 

  • Schintu, M., Marras, B., Durante, L., Meloni, P., & Contu, A. (2010). Macroalgae and DGT as indicators of available trace metals in marine coastal waters near a lead-zinc smelter. Environmental Monitoring and Assessment, 167(1–4), 653–661.

    Article  CAS  Google Scholar 

  • Shimizu, K.-i., Higuchi, T., Takasugi, E., Hatamachi, T., Kodama, T., & Satsuma, A. (2008). Characterization of Lewis acidity of cation-exchanged montmorillonite K-10 clay as effective heterogeneous catalyst for acetylation of alcohol. Journal of Molecular Catalysis A: Chemical, 284, 89–96. https://doi.org/10.1016/J.MOLCATA.2008.01.013.

    Article  CAS  Google Scholar 

  • Shinoda, T., Onaka, M., & Izumi, Y. (1995). Proposed models of mesopore structures in sulfuric acid-treated montmorillonites and K10. Chemistry Letters, 24(7), 495–496.

    Article  Google Scholar 

  • Tyagi, B., Chudasama, C. D., & Jasra, R. V. (2006). Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64, 273–278. https://doi.org/10.1016/J.SAA.2005.07.018.

    Article  Google Scholar 

  • Unlu, N., & Ersoz, M. (2006). Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. Journal of Hazardous Materials, 136, 272–280. https://doi.org/10.1016/J.JHAZMAT.2005.12.013.

    Article  Google Scholar 

  • Uribe, R., Mongin, S., Puy, J., Cecília, J., Galceran, J., Zhang, H., et al. (2011). Contribution of partially labile complexes to the DGT metal flux. Environmental Science & Technology, 45(12), 5317–5322.

    Article  CAS  Google Scholar 

  • Uysal, M., & Ar, I. (2007). Removal of Cr(VI) from industrial wastewaters by adsorption: Part I: Determination of optimum conditions. Journal of Hazardous Materials, 149, 482–491. https://doi.org/10.1016/J.JHAZMAT.2007.04.019.

    Article  CAS  Google Scholar 

  • Vanessa, E. d. A., Gilberto, A., & Marco, T. G. (2011). Potentiality of the use of montmorillonite in diffusive gradients in thin film (DGT) devices for determination of labile species of Cu, Cr, Cd, Mn, Ni, Pb, and Zn in natural waters. Brazilian Journal of Analytical Chemistry, 1, 187–193.

    Google Scholar 

  • Vanessa, E. d. A., Rohwedder, J. R., Cadore, S., Abate, G., & Grassi, M. T. (2014). Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: adsorption and desorption studies of As, Ba, Cu, Cd, Co, Cr, Mn, Ni, Pb, Sr, V, and Zn. Applied Clay Science, 99, 289–296. https://doi.org/10.1016/J.CLAY.2014.07.013.

    Article  Google Scholar 

  • Vanessa, E. d. A., Gilberto, A., & Marco, T. G. (2017). Determination of labile species of As(V), Ba, Cd, Co, Cr(III), Cu, Mn, Ni, Pb, Sr, V(V), and Zn in natural waters using diffusive gradients in thin-film (DGT) devices modified with montmorillonite. Analytical and Bioanalytical Chemistry, 409(7), 1963–1972.

    Article  Google Scholar 

  • Varadwaj, G. B. B., Rana, S., & Parida, K. (2013). Cs salt of Co substituted lacunary phosphotungstate supported K10 montmorillonite showing binary catalytic activity. Chemical Engineering Journal, 215-216, 849–858. https://doi.org/10.1016/J.CEJ.2012.11.036.

    Article  CAS  Google Scholar 

  • Warnken, K. W., Hao, Z., & William, D. (2006). Accuracy of the diffusive gradients in thin-films technique: diffusive boundary layer and effective sampling area considerations. Analytical Chemistry, 78(11), 3780–3787.

    Article  CAS  Google Scholar 

  • Wu, Z., Wang, S., & Luo, J. (2018). Transfer kinetics of phosphorus (P) in macrophyte rhizosphere and phytoremoval performance for lake sediments using DGT technique. Journal of Hazardous Materials, 350, 189–200. https://doi.org/10.1016/J.JHAZMAT.2018.02.005.

    Article  CAS  Google Scholar 

  • Zhang, H., & Davison, W. (1995). Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Analytical Chemistry, 67(19), 3391–3400.

    Article  CAS  Google Scholar 

  • Zhang, S., Williams, P. N., Zhou, C.-Y., Ma, L. Q., & Luo, J. (2017). Extending the functionality of the slurry ferrihydrite-DGT method: performance evaluation for the measurement of vanadate, arsenate, antimonate and molybdate in water. Chemosphere, 184, 812–819. https://doi.org/10.1016/J.CHEMOSPHERE.2017.06.062.

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the National Foundation for Science and Technology Development (NAFOSTED) through the Project code 104.04-2013.66.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lien Nguyen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.L., Phung, A.T., Chu, T.H.N. et al. Applicability of Montmorillonite Immobilized in Hydrogel for the Determination of Labile Cd, Pb, Mn, and Zn in Water Using Diffusive Gradient in Thin Films (DGT). Water Air Soil Pollut 231, 106 (2020). https://doi.org/10.1007/s11270-020-04474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04474-5

Keywords

Navigation