Skip to main content

Advertisement

Log in

Recent advances in aptamer-based sensors for breast cancer diagnosis: special cases for nanomaterial-based VEGF, HER2, and MUC1 aptasensors

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Cancer is one of the most common and important diseases with a high mortality rate. Breast cancer is among the three most common types of cancer in women, and the mortality rate has reached 0.024% in some countries. For early-stage preclinical diagnosis of breast cancer, sensitive and reliable tools are needed. Today, there are many types of biomarkers that have been identified for cancer diagnosis. A wide variety of detection strategies have also been developed for the detection of these biomarkers from serum or other body fluids at physiological concentrations. Aptamers are single-stranded DNA or RNA oligonucleotides and promising in the production of more sensitive and reliable biosensor platforms in combination with a wide range of nanomaterials. Conformational changes triggered by the target analyte have been successfully applied in fluorometric, colorimetric, plasmonic, and electrochemical-based detection strategies. This review article presents aptasensor approaches used in the detection of vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), and mucin-1 glycoprotein (MUC1) biomarkers, which are frequently studied in the diagnosis of breast cancer. The focus of this review article is on developments of the last decade for detecting these biomarkers using various sensitivity enhancement techniques and nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  2. Henley SJ, Ward EM, Scott S, Ma J, Anderson RN, Firth AU, Thomas CC, Islami F, Weir HK, Lewis DR, Sherman RL, Wu M, Benard VB, Richardson LC, Jemal A, Cronin K, Kohler BA (2020) Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer 126(10):2225–2249. https://doi.org/10.1002/cncr.32802

    Article  PubMed  Google Scholar 

  3. DeSantis CE, Fedewa SA, Goding Sauer A, Kramer JL, Smith RA, Jemal A (2016) Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin 66(1):31–42. https://doi.org/10.3322/caac.21320

    Article  PubMed  Google Scholar 

  4. DeSantis C, Ma J, Bryan L, Jemal A (2014) Breast cancer statistics, 2013. CA Cancer J Clin 64(1):52–62. https://doi.org/10.3322/caac.21203

    Article  PubMed  Google Scholar 

  5. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  6. Liu M, Li Z, Yang J, Jiang Y, Chen Z, Ali Z, He N, Wang Z (2016) Cell-specific biomarkers and targeted biopharmaceuticals for breast cancer treatment. Cell Prolif 49(4):409–420. https://doi.org/10.1111/cpr.12266

    Article  PubMed  PubMed Central  Google Scholar 

  7. Azim HA, Ibrahim AS (2014) Breast cancer in Egypt, China and Chinese: statistics and beyond. J Thorac Dis 6(7):864–866. https://doi.org/10.3978/j.issn.2072-1439.2014.06.38

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nover AB, Jagtap S, Anjum W, Yegingil H, Shih WY, Shih W-H, Brooks AD (2009) Modern breast cancer detection: a technological review. International Journal of Biomedical Imaging 2009:902326. https://doi.org/10.1155/2009/902326

    Article  PubMed  PubMed Central  Google Scholar 

  9. Prabhakar B, Shende P, Augustine S (2018) Current trends and emerging diagnostic techniques for lung cancer. Biomed Pharmacother 106:1586–1599. https://doi.org/10.1016/j.biopha.2018.07.145

    Article  CAS  PubMed  Google Scholar 

  10. Mittal S, Kaur H, Gautam N, Mantha AK (2017) Biosensors for breast cancer diagnosis: a review of bioreceptors, biotransducers and signal amplification strategies. Biosens Bioelectron 88:217–231. https://doi.org/10.1016/j.bios.2016.08.028

    Article  CAS  PubMed  Google Scholar 

  11. Hayes B, Murphy C, Crawley A, O'Kennedy R (2018) Developments in point-of-care diagnostic technology for cancer detection. Diagnostics (Basel, Switzerland) 8(2):39. https://doi.org/10.3390/diagnostics8020039

    Article  CAS  Google Scholar 

  12. Florea A, Taleat Z, Cristea C, Mazloum-Ardakani M, Săndulescu R (2013) Label free MUC1 aptasensors based on electrodeposition of gold nanoparticles on screen printed electrodes. Electrochem Commun 33:127–130. https://doi.org/10.1016/j.elecom.2013.05.008

    Article  CAS  Google Scholar 

  13. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29. https://doi.org/10.3322/caac.21254

    Article  PubMed  Google Scholar 

  14. Li X, Ding X, Fan J (2015) Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform. Analyst 140(23):7918–7925. https://doi.org/10.1039/c5an01759a

    Article  CAS  PubMed  Google Scholar 

  15. Wu D, Gao T, Lei L, Yang D, Mao X, Li G (2016) Colorimetric detection of proteins based on target-induced activation of aptazyme. Anal Chim Acta 942:68–73. https://doi.org/10.1016/j.aca.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  16. Altintas Z, Tothill I (2013) Biomarkers and biosensors for the early diagnosis of lung cancer. Sensors Actuators B Chem 188:988–998. https://doi.org/10.1016/j.snb.2013.07.078

    Article  CAS  Google Scholar 

  17. Greenberg DA, Jin K (2004) Experiencing VEGF. Nat Genet 36(8):792–793. https://doi.org/10.1038/ng0804-792

    Article  CAS  PubMed  Google Scholar 

  18. Olsson A-K, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling ? In control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371. https://doi.org/10.1038/nrm1911

    Article  CAS  PubMed  Google Scholar 

  19. Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13(12):871–882. https://doi.org/10.1038/nrc3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hsu C-L, Lien C-W, Wang C-W, Harroun SG, Huang C-C, Chang H-T (2016) Immobilization of aptamer-modified gold nanoparticles on BiOCl nanosheets: tunable peroxidase-like activity by protein recognition. Biosens Bioelectron 75:181–187. https://doi.org/10.1016/j.bios.2015.08.049

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Sun K, Chen Z, Shi J, Zhou D, Xie G (2017) A fluorescence biosensor for VEGF detection based on DNA assembly structure switching and isothermal amplification. Biosens Bioelectron 89:964–969. https://doi.org/10.1016/j.bios.2016.09.078

    Article  CAS  PubMed  Google Scholar 

  22. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611. https://doi.org/10.1210/er.2003-0027

    Article  CAS  PubMed  Google Scholar 

  23. Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17(10):611–625. https://doi.org/10.1038/nrm.2016.87

    Article  CAS  PubMed  Google Scholar 

  24. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56(4):549–580. https://doi.org/10.1124/pr.56.4.3

    Article  CAS  PubMed  Google Scholar 

  25. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257. https://doi.org/10.1038/35025220

    Article  CAS  PubMed  Google Scholar 

  26. Salven P, Orpana A, Joensuu H (1999) Leukocytes and platelets of patients with cancer contain high levels of vascular endothelial growth factor. Clin Cancer Res 5(3):487–491

    CAS  PubMed  Google Scholar 

  27. Ray D, Mishra M, Ralph S, Read I, Davies R, Brenchley P (2004) Association of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes. Diabetes 53(3):861–864. https://doi.org/10.2337/diabetes.53.3.861

    Article  CAS  PubMed  Google Scholar 

  28. Nakahara H, Song J, Sugimoto M, Hagihara K, Kishimoto T, Yoshizaki K, Nishimoto N (2003) Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum 48(6):1521–1529. https://doi.org/10.1002/art.11143

    Article  CAS  PubMed  Google Scholar 

  29. Detmar M (2004) Evidence for vascular endothelial growth factor (VEGF) as a modifier gene in psoriasis. J Invest Dermatol 122(1):xiv–xv. https://doi.org/10.1046/j.0022-202X.2003.22140.x

    Article  CAS  PubMed  Google Scholar 

  30. Fu X-M, Liu Z-J, Cai S-X, Zhao Y-P, Wu D-Z, Li C-Y, Chen J-H (2016) Electrochemical aptasensor for the detection of vascular endothelial growth factor (VEGF) based on DNA-templated Ag/Pt bimetallic nanoclusters. Chin Chem Lett 27(6):920–926. https://doi.org/10.1016/j.cclet.2016.04.014

    Article  CAS  Google Scholar 

  31. Zhu X, Kou F, Xu H, Lin L, Yang G, Lin Z (2017) A highly sensitive aptamer-immunoassay for vascular endothelial growth factor coupled with portable glucose meter and hybridization chain reaction. Sensors Actuators B Chem 253:660–665. https://doi.org/10.1016/j.snb.2017.06.174

    Article  CAS  Google Scholar 

  32. Xu H, Kou F, Ye H, Wang Z, Huang S, Liu X, Zhu X, Lin Z, Chen G (2017) Highly sensitive antibody-aptamer sensor for vascular endothelial growth factor based on hybridization chain reaction and pH meter/indicator. Talanta 175:177–182. https://doi.org/10.1016/j.talanta.2017.04.073

    Article  CAS  PubMed  Google Scholar 

  33. Roskoski R Jr (2007) Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 62(3):179–213. https://doi.org/10.1016/j.critrevonc.2007.01.006

    Article  PubMed  Google Scholar 

  34. Yarden Y (2001) The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer 37(Suppl 4):S3–S8. https://doi.org/10.1016/s0959-8049(01)00230-1

    Article  CAS  PubMed  Google Scholar 

  35. Liu M, Yu X, Chen Z, Yang T, Yang D, Liu Q, Du K, Li B, Wang Z, Li S, Deng Y, He N (2017) Aptamer selection and applications for breast cancer diagnostics and therapy. Journal of nanobiotechnology 15(1):81–81. https://doi.org/10.1186/s12951-017-0311-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lukong KE (2017) Understanding breast cancer-the long and winding road. BBA Clin 7:64–77. https://doi.org/10.1016/j.bbacli.2017.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  37. Toss A, Cristofanilli M (2015) Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res 17:60. https://doi.org/10.1186/s13058-015-0560-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maleki S, Dorokhova O, Sunkara J, Schlesinger K, Suhrland M, Oktay MH (2013) Estrogen, progesterone, and HER-2 receptor immunostaining in cytology: the effect of varied fixation on human breast cancer cells. Diagn Cytopathol 41(10):864–870. https://doi.org/10.1002/dc.22973

    Article  PubMed  Google Scholar 

  39. Wu M, Ma J (2017) Association between imaging characteristics and different molecular subtypes of breast cancer. Acad Radiol 24(4):426–434. https://doi.org/10.1016/j.acra.2016.11.012

    Article  PubMed  Google Scholar 

  40. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182. https://doi.org/10.1126/science.3798106

    Article  CAS  PubMed  Google Scholar 

  41. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707–712. https://doi.org/10.1126/science.2470152

    Article  CAS  PubMed  Google Scholar 

  42. Chun L, Kim S-E, Cho M, W-s C, Nam J, Lee DW, Lee Y (2013) Electrochemical detection of HER2 using single stranded DNA aptamer modified gold nanoparticles electrode. Sensors Actuators B Chem 186:446–450. https://doi.org/10.1016/j.snb.2013.06.046

    Article  CAS  Google Scholar 

  43. Zhang J, Liu Y (2008) HER2 over-expression and response to different chemotherapy regimens in breast cancer. J Zhejiang Univ Sci B 9(1):5–9. https://doi.org/10.1631/jzus.B073003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Musolino A, Ciccolallo L, Panebianco M, Fontana E, Zanoni D, Bozzetti C, Michiara M, Silini EM, Ardizzoni A (2011) Multifactorial central nervous system recurrence susceptibility in patients with HER2-positive breast cancer: epidemiological and clinical data from a population-based cancer registry study. Cancer 117(9):1837–1846. https://doi.org/10.1002/cncr.25771

    Article  PubMed  Google Scholar 

  45. Rouanet P, Roger P, Rousseau E, Thibault S, Romieu G, Mathieu A, Cretin J, Barneon G, Granier M, Maran-Gonzalez A, Daures JP, Boissiere F, Bibeau F (2014) HER2 overexpression a major risk factor for recurrence in pT1a-bN0M0 breast cancer: results from a French regional cohort. Cancer Med 3(1):134–142. https://doi.org/10.1002/cam4.167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu X, Shaikh AB, Yu Y, Li Y, Ni S, Lu A, Zhang G (2017) Potential diagnostic and therapeutic applications of oligonucleotide aptamers in breast cancer. Int J Mol Sci 18(9). https://doi.org/10.3390/ijms18091851

  47. Marin F, Luquet G, Marie B, Medakovic D (2007) Molluscan shell proteins: primary structure, origin, and evolution. In: current topics in developmental biology, vol 80. Academic Press, pp 209–276. doi: https://doi.org/10.1016/S0070-2153(07)80006-8

  48. Lakshmanan I, Ponnusamy MP, Macha MA, Haridas D, Majhi PD, Kaur S, Jain M, Batra SK, Ganti AK (2015) Mucins in lung cancer: diagnostic, prognostic, and therapeutic implications. J Thorac Oncol 10(1):19–27. https://doi.org/10.1097/JTO.0000000000000404

    Article  CAS  PubMed  Google Scholar 

  49. Roy LD, Sahraei M, Subramani DB, Besmer D, Nath S, Tinder TL, Bajaj E, Shanmugam K, Lee YY, Hwang SIL, Gendler SJ, Mukherjee P (2011) MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene 30(12):1449–1459. https://doi.org/10.1038/onc.2010.526

    Article  CAS  PubMed  Google Scholar 

  50. Rahn JJ, Dabbagh L, Pasdar M, Hugh JC (2001) The importance of MUC1 cellular localization in patients with breast carcinoma:an immunohistologic study of 71 patients and review of the literature. Cancer 91(11):1973–1982. https://doi.org/10.1002/1097-0142(20010601)91:11<1973::AID-CNCR1222>3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  51. Ma F, Ho C, Cheng AKH, Yu H-Z (2013) Immobilization of redox-labeled hairpin DNA aptamers on gold: electrochemical quantitation of epithelial tumor marker mucin 1. Electrochim Acta 110:139–145. https://doi.org/10.1016/j.electacta.2013.02.088

    Article  CAS  Google Scholar 

  52. Liu X, Qin Y, Deng C, Xiang J, Li Y (2015) A simple and sensitive impedimetric aptasensor for the detection of tumor markers based on gold nanoparticles signal amplification. Talanta 132:150–154. https://doi.org/10.1016/j.talanta.2014.08.072

    Article  CAS  PubMed  Google Scholar 

  53. Hu R, Wen W, Wang Q, Xiong H, Zhang X, Gu H, Wang S (2014) Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1. Biosens Bioelectron 53:384–389. https://doi.org/10.1016/j.bios.2013.10.015

    Article  CAS  PubMed  Google Scholar 

  54. Nath S, Mukherjee P (2014) MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 20(6):332–342. https://doi.org/10.1016/j.molmed.2014.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moreno M, Bontkes HJ, Scheper RJ, Kenemans P, Verheijen RHM, von Mensdorff-Pouilly S (2007) High level of MUC1 in serum of ovarian and breast cancer patients inhibits huHMFG-1 dependent cell-mediated cytotoxicity (ADCC). Cancer Lett 257(1):47–55. https://doi.org/10.1016/j.canlet.2007.06.016

    Article  CAS  PubMed  Google Scholar 

  56. Gheybi E, Amani J, Salmanian AH, Mashayekhi F, Khodi S (2014) Designing a recombinant chimeric construct contain MUC1 and HER2 extracellular domain for prediagnostic breast cancer. Tumor Biol 35(11):11489–11497. https://doi.org/10.1007/s13277-014-2483-y

    Article  CAS  Google Scholar 

  57. Cruz I, Ciudad J, Cruz JJ, Ramos M, Gomez-Alonso A, Adansa JC, Rodriguez C, Orfao A (2005) Evaluation of multiparameter flow cytometry for the detection of breast cancer tumor cells in blood samples. Am J Clin Pathol 123(1):66–74. https://doi.org/10.1309/wp3qwkvjfydhhxqd

    Article  PubMed  Google Scholar 

  58. Colomer R, Aranda-López I, Albanell J, García-Caballero T, Ciruelos E, López-García MÁ, Cortés J, Rojo F, Martín M, Palacios-Calvo J (2018) Biomarkers in breast cancer: a consensus statement by the Spanish Society of Medical Oncology and the Spanish Society of Pathology. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 20(7):815–826. https://doi.org/10.1007/s12094-017-1800-5

    Article  CAS  Google Scholar 

  59. Moelans C, De Weger R, Van der Wall E, Van Diest P (2011) Current technologies for HER2 testing in breast cancer. Crit Rev Oncol Hematol 80(3):380–392

    Article  CAS  PubMed  Google Scholar 

  60. Lan J, Li L, Liu Y, Yan L, Li C, Chen J, Chen X (2016) Upconversion luminescence assay for the detection of the vascular endothelial growth factor, a biomarker for breast cancer. Microchim Acta 183(12):3201–3208. https://doi.org/10.1007/s00604-016-1965-6

    Article  CAS  Google Scholar 

  61. Zhao S, Yang W, Lai RY (2011) A folding-based electrochemical aptasensor for detection of vascular endothelial growth factor in human whole blood. Biosens Bioelectron 26(5):2442–2447. https://doi.org/10.1016/j.bios.2010.10.029

    Article  CAS  PubMed  Google Scholar 

  62. Elmore JG, Barton MB, Moceri VM, Polk S, Arena PJ, Fletcher SW (1998) Ten-year risk of false positive screening mammograms and clinical breast examinations. N Engl J Med 338(16):1089–1096. https://doi.org/10.1056/nejm199804163381601

    Article  CAS  PubMed  Google Scholar 

  63. Anderson SM, Chen TT, Iruela-Arispe ML, Segura T (2009) The phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2) by engineered surfaces with electrostatically or covalently immobilized VEGF. Biomaterials 30(27):4618–4628. https://doi.org/10.1016/j.biomaterials.2009.05.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Prabhulkar S, Alwarappan S, Liu G, Li C-Z (2009) Amperometric micro-immunosensor for the detection of tumor biomarker. Biosens Bioelectron 24(12):3524–3530. https://doi.org/10.1016/j.bios.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  65. Suzuki Y, Yokoyama K (2009) Development of a fluorescent peptide for the detection of vascular endothelial growth factor (VEGF). ChemBioChem 10(11):1793–1795. https://doi.org/10.1002/cbic.200900190

    Article  CAS  PubMed  Google Scholar 

  66. Lindenberg MA, Miquel-Cases A, Retel VP, Sonke GS, Wesseling J, Stokkel MPM, van Harten WH (2017) Imaging performance in guiding response to neoadjuvant therapy according to breast cancer subtypes: a systematic literature review. Crit Rev Oncol Hematol 112:198–207. https://doi.org/10.1016/j.critrevonc.2017.02.014

    Article  PubMed  Google Scholar 

  67. Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42(8):3184–3196. https://doi.org/10.1039/C3CS35528D

    Article  CAS  PubMed  Google Scholar 

  68. Damborský P, Švitel J, Katrlík J (2016) Optical biosensors. Essays Biochem 60(1):91–100. https://doi.org/10.1042/ebc20150010

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hianik T, Wang J (2009) Electrochemical aptasensors–recent achievements and perspectives. Electroanalysis 21(11):1223–1235. https://doi.org/10.1002/elan.200904566

    Article  CAS  Google Scholar 

  70. Garyfallou G-Z, Ketebu O, Şahin S, Mukaetova-Ladinska EB, Catt M, Yu EH (2017) Electrochemical detection of plasma immunoglobulin as a biomarker for Alzheimer’s disease. Sensors 17(11):2464

    Article  PubMed Central  Google Scholar 

  71. Perumal V, Hashim U (2014) Advances in biosensors: principle, architecture and applications. J Appl Biomed 12(1):1–15. https://doi.org/10.1016/j.jab.2013.02.001

    Article  Google Scholar 

  72. Şahin S, Merotra J, Kang J, Trenell M, Catt M, Yu EH (2018) Simultaneous electrochemical detection of glucose and non-esterified fatty acids (NEFAs) for diabetes management. IEEE Sensors J 18(22):9075–9080

    Article  Google Scholar 

  73. Amouzadeh Tabrizi M, Shamsipur M, Farzin L (2015) A high sensitive electrochemical aptasensor for the determination of VEGF165 in serum of lung cancer patient. Biosens Bioelectron 74:764–769. https://doi.org/10.1016/j.bios.2015.07.032

    Article  CAS  PubMed  Google Scholar 

  74. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620(1):8–26. https://doi.org/10.1016/j.aca.2008.05.022

    Article  CAS  PubMed  Google Scholar 

  75. Şahin S (2019) A simple and sensitive hydrogen peroxide detection with horseradish peroxidase immobilized on pyrene modified acid-treated single-walled carbon nanotubes. J Chem Technol Biotechnol

  76. Giuliano Z, Roberta L, Fabio G, Tommaso B, Marco B (2017) Emerging applications of label-free optical biosensors. Nanophotonics 6(4):627–645. https://doi.org/10.1515/nanoph-2016-0158

    Article  CAS  Google Scholar 

  77. Kimoto M, Nakamura M, Hirao I (2016) Post-ExSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF165 toward pharmaceutical applications. Nucleic Acids Res 44(15):7487–7494. https://doi.org/10.1093/nar/gkw619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. https://doi.org/10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  79. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510. https://doi.org/10.1126/science.2200121

    Article  CAS  PubMed  Google Scholar 

  80. Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43(1):48–57. https://doi.org/10.1021/ar900101s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xi Z, Zheng B, Wang C (2016) Synthesis, surface modification, and biolabeling with aptamer of Fe3O4@SiO2 magnetic nanoparticles. Nanosci Nanotechnol Lett 8(12):1061–1066. https://doi.org/10.1166/nnl.2016.2246

    Article  Google Scholar 

  82. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9(7):537–550. https://doi.org/10.1038/nrd3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed Engl 48(15):2672–2689. https://doi.org/10.1002/anie.200804643

    Article  CAS  PubMed  Google Scholar 

  84. Xi Z, Huang R, Deng Y, He N (2014) Progress in selection and biomedical applications of aptamers. J Biomed Nanotechnol 10(10):3043–3062. https://doi.org/10.1166/jbn.2014.1979

    Article  CAS  PubMed  Google Scholar 

  85. Cennamo N, Pesavento M, Lunelli L, Vanzetti L, Pederzolli C, Zeni L, Pasquardini L (2015) An easy way to realize SPR aptasensor: a multimode plastic optical fiber platform for cancer biomarkers detection. Talanta 140:88–95. https://doi.org/10.1016/j.talanta.2015.03.025

    Article  CAS  PubMed  Google Scholar 

  86. Pasquardini L, Pancheri L, Potrich C, Ferri A, Piemonte C, Lunelli L, Napione L, Comunanza V, Alvaro M, Vanzetti L, Bussolino F, Pederzolli C (2015) SPAD aptasensor for the detection of circulating protein biomarkers. Biosens Bioelectron 68:500–507. https://doi.org/10.1016/j.bios.2015.01.042

    Article  CAS  PubMed  Google Scholar 

  87. Ko J, Lee S, Lee EK, Chang S-I, Chen L, Yoon S-Y, Choo J (2013) SERS-based immunoassay of tumor marker VEGF using DNA aptamers and silica-encapsulated hollow gold nanospheres. Phys Chem Chem Phys 15(15):5379–5385. https://doi.org/10.1039/C2CP43155F

    Article  CAS  PubMed  Google Scholar 

  88. Hofmann HP, Limmer S, Hornung V, Sprinzl M (1997) Ni2+−binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair. Rna 3(11):1289–1300

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Rajendran M, Ellington AD (2008) Selection of fluorescent aptamer beacons that light up in the presence of zinc. Anal Bioanal Chem 390(4):1067–1075. https://doi.org/10.1007/s00216-007-1735-8

    Article  CAS  PubMed  Google Scholar 

  90. Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287(5454):820–825. https://doi.org/10.1126/science.287.5454.820

    Article  CAS  PubMed  Google Scholar 

  91. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355(6360):564–566. https://doi.org/10.1038/355564a0

    Article  CAS  PubMed  Google Scholar 

  92. Tang Z, Parekh P, Turner P, Moyer RW, Tan W (2009) Generating aptamers for recognition of virus-infected cells. Clin Chem 55(4):813–822. https://doi.org/10.1373/clinchem.2008.113514

    Article  CAS  PubMed  Google Scholar 

  93. Bruno JG, Kiel JL (1999) In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens Bioelectron 14(5):457–464. https://doi.org/10.1016/s0956-5663(99)00028-7

    Article  CAS  PubMed  Google Scholar 

  94. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103(32):11838–11843. https://doi.org/10.1073/pnas.0602615103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tang Z, Shangguan D, Wang K, Shi H, Sefah K, Mallikratchy P, Chen HW, Li Y, Tan W (2007) Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 79(13):4900–4907. https://doi.org/10.1021/ac070189y

    Article  CAS  PubMed  Google Scholar 

  96. Kopra K, Syrjänpää M, Hänninen P, Härmä H (2014) Non-competitive aptamer-based quenching resonance energy transfer assay for homogeneous growth factor quantification. Analyst 139(8):2016–2023. https://doi.org/10.1039/C3AN01814H

    Article  CAS  PubMed  Google Scholar 

  97. Cho H, Yeh E-C, Sinha R, Laurence TA, Bearinger JP, Lee LP (2012) Single-step nanoplasmonic VEGF165 aptasensor for early cancer diagnosis. ACS Nano 6(9):7607–7614. https://doi.org/10.1021/nn203833d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hori S-I, Herrera A, Rossi JJ, Zhou J (2018) Current advances in aptamers for cancer diagnosis and therapy. Cancers 10(1):9. https://doi.org/10.3390/cancers10010009

    Article  CAS  PubMed Central  Google Scholar 

  99. Yousefi M, Dehghani S, Nosrati R, Zare H, Evazalipour M, Mosafer J, Tehrani BS, Pasdar A, Mokhtarzadeh A, Ramezani M (2019) Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: a review. Biosens Bioelectron 130:1–19. https://doi.org/10.1016/j.bios.2019.01.015

    Article  CAS  PubMed  Google Scholar 

  100. Dehghani S, Nosrati R, Yousefi M, Nezami A, Soltani F, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M (2018) Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): a review. Biosens Bioelectron 110:23–37. https://doi.org/10.1016/j.bios.2018.03.037

    Article  CAS  PubMed  Google Scholar 

  101. Chen C, Zhou S, Cai Y, Tang F (2017) Nucleic acid aptamer application in diagnosis and therapy of colorectal cancer based on cell-SELEX technology. npj Precision Oncology 1(1):37. https://doi.org/10.1038/s41698-017-0041-y

    Article  PubMed  PubMed Central  Google Scholar 

  102. Cui F, Zhou Z, Zhou HS (2020) Review—measurement and analysis of cancer biomarkers based on electrochemical biosensors. J Electrochem Soc 167(3):037525. https://doi.org/10.1149/2.0252003jes

    Article  CAS  Google Scholar 

  103. Campuzano S, Pedrero M, Pingarrón MJ (2017) Non-invasive breast cancer diagnosis through electrochemical biosensing at different molecular levels. Sensors 17(9). https://doi.org/10.3390/s17091993

  104. Kaur H, Shorie M (2019) Nanomaterial based aptasensors for clinical and environmental diagnostic applications. Nanoscale Advances 1(6):2123–2138. https://doi.org/10.1039/C9NA00153K

    Article  CAS  Google Scholar 

  105. Li Z, Mohamed MA, Vinu Mohan AM, Zhu Z, Sharma V, Mishra GK, Mishra RK (2019) Application of electrochemical aptasensors toward clinical diagnostics, food, and environmental monitoring: review. Sensors 19(24):5435

    Article  CAS  PubMed Central  Google Scholar 

  106. Díaz-Fernández A, Lorenzo-Gómez R, Miranda-Castro R, de los Santos-Álvarez N, Lobo-Castañón MJ (2020) Electrochemical aptasensors for cancer diagnosis in biological fluids–a review. Analytica Chimica Acta

  107. Freeman R, Girsh J, Fang-ju Jou A, Ho J-aA, Hug T, Dernedde J, Willner I (2012) Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Anal Chem 84(14):6192–6198. https://doi.org/10.1021/ac3011473

    Article  CAS  PubMed  Google Scholar 

  108. Wang S-E, Si S (2013) A fluorescent nanoprobe based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein vascular endothelial growth factor (VEGF). Appl Spectrosc 67(11):1270–1274. https://doi.org/10.1366/13-07071

    Article  CAS  PubMed  Google Scholar 

  109. Zhang X, Xiao K, Cheng L, Chen H, Liu B, Zhang S, Kong J (2014) Visual and highly sensitive detection of cancer cells by a colorimetric aptasensor based on cell-triggered cyclic enzymatic signal amplification. Anal Chem 86(11):5567–5572. https://doi.org/10.1021/ac501068k

    Article  CAS  PubMed  Google Scholar 

  110. Kwon OS, Park SJ, Hong J-Y, Han AR, Lee JS, Lee JS, Oh JH, Jang J (2012) Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 6(2):1486–1493. https://doi.org/10.1021/nn204395n

    Article  CAS  PubMed  Google Scholar 

  111. Chen X, Zhang Q, Qian C, Hao N, Xu L, Yao C (2015) Electrochemical aptasensor for mucin 1 based on dual signal amplification of poly(o-phenylenediamine) carrier and functionalized carbon nanotubes tracing tag. Biosens Bioelectron 64:485–492. https://doi.org/10.1016/j.bios.2014.09.052

    Article  CAS  PubMed  Google Scholar 

  112. Shan S, He Z, Mao S, Jie M, Yi L, Lin J-M (2017) Quantitative determination of VEGF165 in cell culture medium by aptamer sandwich based chemiluminescence assay. Talanta 171:197–203. https://doi.org/10.1016/j.talanta.2017.04.057

    Article  CAS  PubMed  Google Scholar 

  113. Nonaka Y, Abe K, Ikebukuro K (2012) Electrochemical detection of vascular endothelial growth factor with aptamer sandwich. Electrochemistry 80(5):363–366. https://doi.org/10.5796/electrochemistry.80.363

    Article  CAS  Google Scholar 

  114. Song Y, Zhu Z, An Y, Zhang W, Zhang H, Liu D, Yu C, Duan W, Yang CJ (2013) Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem 85(8):4141–4149. https://doi.org/10.1021/ac400366b

    Article  CAS  PubMed  Google Scholar 

  115. Ahirwar R, Nahar S, Aggarwal S, Ramachandran S, Maiti S, Nahar P (2016) In silico selection of an aptamer to estrogen receptor alpha using computational docking employing estrogen response elements as aptamer-alike molecules. Sci Rep 6(1):21285. https://doi.org/10.1038/srep21285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Niazi JH, Verma SK, Niazi S, Qureshi A (2015) In vitro HER2 protein-induced affinity dissociation of carbon nanotube-wrapped anti-HER2 aptamers for HER2 protein detection. Analyst 140(1):243–249. https://doi.org/10.1039/C4AN01665C

    Article  CAS  PubMed  Google Scholar 

  117. Liu Z, Duan JH, Song YM, Ma J, Wang FD, Lu X, Yang XD (2012) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med 10:148. https://doi.org/10.1186/1479-5876-10-148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim MY, Jeong S (2011) In vitro selection of RNA aptamer and specific targeting of ErbB2 in breast cancer cells. Nucleic acid therapeutics 21(3):173–178. https://doi.org/10.1089/nat.2011.0283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sett A, Borthakur BB, Bora U (2017) Selection of DNA aptamers for extra cellular domain of human epidermal growth factor receptor 2 to detect HER2 positive carcinomas. Clin Transl Oncol 19(8):976–988. https://doi.org/10.1007/s12094-017-1629-y

    Article  CAS  PubMed  Google Scholar 

  120. Cheng AKH, Su H, Wang YA, Yu H-Z (2009) Aptamer-based detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Anal Chem 81(15):6130–6139. https://doi.org/10.1021/ac901223q

    Article  CAS  PubMed  Google Scholar 

  121. Cao H, Fang X, Li H, Li H, Kong J (2017) Ultrasensitive detection of mucin 1 biomarker by immuno-loop-mediated isothermal amplification. Talanta 164:588–592. https://doi.org/10.1016/j.talanta.2016.07.018

    Article  CAS  PubMed  Google Scholar 

  122. Ferreira CSM, Papamichael K, Guilbault G, Schwarzacher T, Gariepy J, Missailidis S (2008) DNA aptamers against the MUC1 tumour marker: design of aptamer–antibody sandwich ELISA for the early diagnosis of epithelial tumours. Anal Bioanal Chem 390(4):1039–1050. https://doi.org/10.1007/s00216-007-1470-1

    Article  CAS  PubMed  Google Scholar 

  123. Nonaka Y, Sode K, Ikebukuro K (2010) Screening and improvement of an anti-VEGF DNA aptamer. Molecules 15(1). https://doi.org/10.3390/molecules15010215

  124. Potty AS, Kourentzi K, Fang H, Jackson GW, Zhang X, Legge GB, Willson RC (2009) Biophysical characterization of DNA aptamer interactions with vascular endothelial growth factor. Biopolymers 91(2):145–156. https://doi.org/10.1002/bip.21097

    Article  CAS  PubMed  Google Scholar 

  125. Kwon OS, Park SJ, Jang J (2010) A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor. Biomaterials 31(17):4740–4747. https://doi.org/10.1016/j.biomaterials.2010.02.040

    Article  CAS  PubMed  Google Scholar 

  126. Chattaraj R, Mohan P, Livingston CM, Besmer JD, Kumar K, Goodwin AP (2016) Mutually-reactive, fluorogenic hydrocyanine/quinone reporter pairs for in-solution biosensing via nanodroplet association. ACS Appl Mater Interfaces 8(1):802–808. https://doi.org/10.1021/acsami.5b10036

    Article  CAS  PubMed  Google Scholar 

  127. Sosic A, Meneghello A, Antognoli A, Cretaio E, Gatto B (2013) Development of a multiplex sandwich aptamer microarray for the detection of VEGF165 and thrombin. Sensors 13(10):13425–13438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nonaka Y, Yoshida W, Abe K, Ferri S, Schulze H, Bachmann TT, Ikebukuro K (2013) Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system. Anal Chem 85(2):1132–1137. https://doi.org/10.1021/ac303023d

    Article  CAS  PubMed  Google Scholar 

  129. Wang S-E, Huang Y, Hu K, Tian J, Zhao S (2014) A highly sensitive and selective aptasensor based on fluorescence polarization for the rapid determination of oncoprotein vascular endothelial growth factor (VEGF). Anal Methods 6(1):62–66. https://doi.org/10.1039/C3AY41697F

    Article  CAS  Google Scholar 

  130. Lin X, Chen Q, Liu W, Yi L, Li H, Wang Z, Lin J-M (2015) Assay of multiplex proteins from cell metabolism based on tunable aptamer and microchip electrophoresis. Biosens Bioelectron 63:105–111. https://doi.org/10.1016/j.bios.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  131. Kaur H, Yung L-YL (2012) Probing high affinity sequences of DNA aptamer against VEGF165. PLoS One 7(2):e31196. https://doi.org/10.1371/journal.pone.0031196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang M, Gao G, Ding Y, Deng C, Xiang J, Wu H (2019) A fluorescent aptasensor for the femtomolar detection of epidermal growth factor receptor-2 based on the proximity of G-rich sequences to Ag nanoclusters. Talanta 199:238–243. https://doi.org/10.1016/j.talanta.2019.02.014

    Article  CAS  PubMed  Google Scholar 

  133. Xu J, Chen W, Shi M, Huang Y, Fang L, Zhao S, Yao L, Liang H (2019) An aptamer-based four-color fluorometic method for simultaneous determination and imaging of alpha-fetoprotein, vascular endothelial growth factor-165, carcinoembryonic antigen and human epidermal growth factor receptor 2 in living cells. Microchim Acta 186(3). https://doi.org/10.1007/s00604-019-3312-1

  134. He Y, Lin Y, Tang H, Pang D (2012) A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1. Nanoscale 4(6):2054–2059. https://doi.org/10.1039/C2NR12061E

    Article  CAS  PubMed  Google Scholar 

  135. Ding Y, Ling J, Wang H, Zou J, Wang K, Xiao X, Yang M (2015) Fluorescent detection of Mucin 1 protein based on aptamer functionalized biocompatible carbon dots and graphene oxide. Anal Methods 7(18):7792–7798. https://doi.org/10.1039/c5ay01680k

    Article  CAS  Google Scholar 

  136. Ma N, Jiang W, Li T, Zhang Z, Qi H, Yang M (2015) Fluorescence aggregation assay for the protein biomarker mucin 1 using carbon dot-labeled antibodies and aptamers. Microchim Acta 182(1–2):443–447. https://doi.org/10.1007/s00604-014-1386-3

    Article  CAS  Google Scholar 

  137. Li C, Meng Y, Wang S, Qian M, Wang J, Lu W, Huang R (2015) Mesoporous carbon nanospheres featured fluorescent aptasensor for multiple diagnosis of cancer in vitro and in vivo. ACS Nano 9(12):12096–12103. https://doi.org/10.1021/acsnano.5b05137

    Article  CAS  PubMed  Google Scholar 

  138. Zhang Y, Guo S, Huang H, Mao G, Ji X, He Z (2018) Silicon nanodot-based aptasensor for fluorescence turn-on detection of mucin 1 and targeted cancer cell imaging. Anal Chim Acta 1035:154–160. https://doi.org/10.1016/j.aca.2018.06.032

    Article  CAS  PubMed  Google Scholar 

  139. Liu H, Zhang L, Xu Y, Chen J, Wang Y, Huang Q, Chen X, Liu Y, Dai Z, Zou X, Li Z (2019) Sandwich immunoassay coupled with isothermal exponential amplification reaction: an ultrasensitive approach for determination of tumor marker MUC1. Talanta 204:248–254. https://doi.org/10.1016/j.talanta.2019.06.001

    Article  CAS  PubMed  Google Scholar 

  140. Fan X, Qin Y, Jiang B, Yuan R, Xiang Y (2020) Target-induced autonomous synthesis of G-quadruplex sequences for label-free and amplified fluorescent aptasensing of mucin 1. Sensors and Actuators, B: Chemical 304. doi:https://doi.org/10.1016/j.snb.2019.127351

  141. Wang DE, Gao X, You S, Chen M, Ren L, Sun W, Yang H, Xu H (2020) Aptamer-functionalized polydiacetylene liposomes act as a fluorescent sensor for sensitive detection of MUC1 and targeted imaging of cancer cells. Sensors Actuators B Chem 309. https://doi.org/10.1016/j.snb.2020.127778

  142. Li J, Liu J, Bi Y, Sun M, Bai J, Zhou M (2020) Ultrasensitive electrochemiluminescence biosensing platform for miRNA-21 and MUC1 detection based on dual catalytic hairpin assembly. Anal Chim Acta 1105:87–94. https://doi.org/10.1016/j.aca.2020.01.034

    Article  CAS  PubMed  Google Scholar 

  143. Li W, Zhang Q, Zhou H, Chen J, Li Y, Zhang C, Yu C (2015) Chemiluminescence detection of a protein through the aptamer-controlled catalysis of a porphyrin probe. Anal Chem 87(16):8336–8341. https://doi.org/10.1021/acs.analchem.5b01511

    Article  CAS  PubMed  Google Scholar 

  144. Zhang H, Li M, Li C, Guo Z, Dong H, Wu P, Cai C (2015) G-quadruplex DNAzyme-based electrochemiluminescence biosensing strategy for VEGF165 detection: combination of aptamer–target recognition and T7 exonuclease-assisted cycling signal amplification. Biosens Bioelectron 74:98–103. https://doi.org/10.1016/j.bios.2015.05.069

    Article  CAS  PubMed  Google Scholar 

  145. Mita C, Abe K, Fukaya T, Ikebukuro K (2014) Vascular endothelial growth factor (VEGF) detection using an aptamer and PNA-based bound/free separation system. Materials 7(2):1046–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Moghadam FM, Rahaie M (2019) A signal-on nanobiosensor for VEGF 165 detection based on supraparticle copper nanoclusters formed on bivalent aptamer. Biosens Bioelectron 132:186–195. https://doi.org/10.1016/j.bios.2019.02.046

    Article  CAS  PubMed  Google Scholar 

  147. Valeur B, Berberan-Santos MN (2011) A brief history of fluorescence and phosphorescence before the emergence of quantum theory. J Chem Educ 88(6):731–738. https://doi.org/10.1021/ed100182h

    Article  CAS  Google Scholar 

  148. Degliangeli F, Kshirsagar P, Brunetti V, Pompa PP, Fiammengo R (2014) Absolute and direct microRNA quantification using DNA–gold nanoparticle probes. J Am Chem Soc 136(6):2264–2267. https://doi.org/10.1021/ja412152x

    Article  CAS  PubMed  Google Scholar 

  149. Shi J, Tian F, Lyu J, Yang M (2015) Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications. J Mater Chem B 3(35):6989–7005. https://doi.org/10.1039/C5TB00885A

    Article  CAS  PubMed  Google Scholar 

  150. Murthy KVR, Virk HS (2014) Luminescence phenomena: an introduction. Defect and Diffusion Forum 347:1–34. https://doi.org/10.4028/www.scientific.net/DDF.347.1

    Article  CAS  Google Scholar 

  151. Ronda C, Srivastava A (2006) Luminescence science and display materials. Electrochemical Society Interface 15(1):55–57

    CAS  Google Scholar 

  152. Chang C-C, Chen C-Y, Chuang T-L, Wu T-H, Wei S-C, Liao H, Lin C-W (2016) Aptamer-based colorimetric detection of proteins using a branched DNA cascade amplification strategy and unmodified gold nanoparticles. Biosens Bioelectron 78:200–205. https://doi.org/10.1016/j.bios.2015.11.051

    Article  CAS  PubMed  Google Scholar 

  153. Wu L, Wang J, Feng L, Ren J, Wei W, Qu X (2012) Label-free ultrasensitive detection of human telomerase activity using porphyrin-functionalized graphene and electrochemiluminescence technique. Adv Mater 24(18):2447–2452. https://doi.org/10.1002/adma.201200412

    Article  CAS  PubMed  Google Scholar 

  154. Mansuriya BD, Altintas Z (2020) Applications of graphene quantum dots in biomedical sensors. Sensors (Basel, Switzerland) 20(4):1072. https://doi.org/10.3390/s20041072

    Article  CAS  Google Scholar 

  155. Banerjee A, Pons T, Lequeux N, Dubertret B (2016) Quantum dots-DNA bioconjugates: synthesis to applications. Interface focus 6(6):20160064–20160064. https://doi.org/10.1098/rsfs.2016.0064

    Article  PubMed  PubMed Central  Google Scholar 

  156. Jin S, Hu Y, Gu Z, Liu L, Wu H-C (2011) Application of quantum dots in biological imaging. J Nanomater 2011

  157. Song C, Zhang S, Zhou Q, Hai H, Zhao D, Hui Y (2017) Upconversion nanoparticles for bioimaging. Nanotechnol Rev 6(2):233–242. https://doi.org/10.1515/ntrev-2016-0043

    Article  CAS  Google Scholar 

  158. Wang M, Abbineni G, Clevenger A, Mao C, Xu S (2011) Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomedicine 7(6):710–729. https://doi.org/10.1016/j.nano.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  159. Pan L-H, Kuo S-H, Lin T-Y, Lin C-W, Fang P-Y, Yang H-W (2017) An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles. Biosens Bioelectron 89:598–605. https://doi.org/10.1016/j.bios.2016.01.077

    Article  CAS  PubMed  Google Scholar 

  160. Charbgoo F, Soltani F, Taghdisi SM, Abnous K, Ramezani M (2016) Nanoparticles application in high sensitive aptasensor design. TrAC Trends Anal Chem 85:85–97. https://doi.org/10.1016/j.trac.2016.08.008

    Article  CAS  Google Scholar 

  161. Wu CH, Huang YY, Chen P, Hoshino K, Liu H, Frenkel EP, Zhang JX, Sokolov KV (2013) Versatile immunomagnetic nanocarrier platform for capturing cancer cells. ACS Nano 7(10):8816–8823. https://doi.org/10.1021/nn403281e

    Article  CAS  PubMed  Google Scholar 

  162. Du Y, Dong S (2017) Nucleic acid biosensors: recent advances and perspectives. Anal Chem 89(1):189–215. https://doi.org/10.1021/acs.analchem.6b04190

    Article  CAS  PubMed  Google Scholar 

  163. Zhang H, Peng L, Li M, Ma J, Qi S, Chen H, Zhou L, Chen X (2017) A label-free colorimetric biosensor for sensitive detection of vascular endothelial growth factor-165. Analyst 142(13):2419–2425. https://doi.org/10.1039/C7AN00541E

    Article  CAS  PubMed  Google Scholar 

  164. Yoo SM, Lee SY (2016) Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol 34(1):7–25. https://doi.org/10.1016/j.tibtech.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  165. Ranganathan V, Srinivasan S, Singh A, DeRosa MC (2020) An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2). Anal Biochem 588. https://doi.org/10.1016/j.ab.2019.113471

  166. Liu S, Xu N, Tan C, Fang W, Tan Y, Jiang Y (2018) A sensitive colorimetric aptasensor based on trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles. Anal Chim Acta 1018:86–93. https://doi.org/10.1016/j.aca.2018.01.040

    Article  CAS  PubMed  Google Scholar 

  167. Zhao S, Ma W, Xu L, Wu X, Kuang H, Wang L, Xu C (2015) Ultrasensitive SERS detection of VEGF based on a self-assembled Ag ornamented–AU pyramid superstructure. Biosens Bioelectron 68:593–597. https://doi.org/10.1016/j.bios.2015.01.056

    Article  CAS  PubMed  Google Scholar 

  168. Kim JH, Suh JS, Yang J (2020) Labeling-free detection of ECD-HER2 protein using aptamer-based nano-plasmonic sensor. Nanotechnology 31(17). https://doi.org/10.1088/1361-6528/ab68fa

  169. Li Y, Lee HJ, Corn RM (2007) Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem 79(3):1082–1088. https://doi.org/10.1021/ac061849m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chen Y, Nakamoto K, Niwa O, Corn RM (2012) On-chip synthesis of RNA aptamer microarrays for multiplexed protein biosensing with SPR imaging measurements. Langmuir 28(22):8281–8285. https://doi.org/10.1021/la300656c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chen H, Hou Y, Qi F, Zhang J, Koh K, Shen Z, Li G (2014) Detection of vascular endothelial growth factor based on rolling circle amplification as a means of signal enhancement in surface plasmon resonance. Biosens Bioelectron 61:83–87. https://doi.org/10.1016/j.bios.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  172. Sigal GB, Mrksich M, Whitesides GM (1997) Using surface plasmon resonance spectroscopy to measure the association of detergents with self-assembled monolayers of hexadecanethiolate on gold. Langmuir 13(10):2749–2755

    Article  CAS  Google Scholar 

  173. Han X, Liu K, Sun C (2019) Plasmonics for biosensing. Materials (Basel, Switzerland) 12(9):1411. https://doi.org/10.3390/ma12091411

    Article  CAS  Google Scholar 

  174. Wong CL, Olivo M (2014) Surface plasmon resonance imaging sensors: a review. Plasmonics 9(4):809–824. https://doi.org/10.1007/s11468-013-9662-3

    Article  CAS  Google Scholar 

  175. Špačková B, Wrobel P, Bocková M, Homola J (2016) Optical biosensors based on plasmonic nanostructures: a review. Proc IEEE 104(12):2380–2408. https://doi.org/10.1109/JPROC.2016.2624340

    Article  Google Scholar 

  176. Stiles PL, Dieringer JA, Shah NC, Duyne RPV (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1(1):601–626. https://doi.org/10.1146/annurev.anchem.1.031207.112814

    Article  CAS  Google Scholar 

  177. Mosier-Boss PA (2017) Review of SERS substrates for chemical sensing. Nanomaterials (Basel, Switzerland) 7(6):142. https://doi.org/10.3390/nano7060142

    Article  CAS  Google Scholar 

  178. Laing S, Jamieson LE, Faulds K, Graham D (2017) Surface-enhanced Raman spectroscopy for in vivo biosensing. Nature Reviews Chemistry 1(8):0060. https://doi.org/10.1038/s41570-017-0060

    Article  CAS  Google Scholar 

  179. Hodnik V, Anderluh G (2009) Toxin detection by surface plasmon resonance. Sensors (Basel, Switzerland) 9(3):1339–1354. https://doi.org/10.3390/s9031339

    Article  CAS  Google Scholar 

  180. Poltronieri P, Mezzolla V, Primiceri E, Maruccio G (2014) Biosensors for the detection of food pathogens. Foods (Basel, Switzerland) 3(3):511–526. https://doi.org/10.3390/foods3030511

    Article  CAS  Google Scholar 

  181. Sahoo PR, Swain P, Nayak SM, Bag S, Mishra SR (2016) Surface plasmon resonance based biosensor: a new platform for rapid diagnosis of livestock diseases. Veterinary world 9(12):1338–1342. https://doi.org/10.14202/vetworld.2016.1338-1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Minunni M, Bilia AR (2009) SPR in drug discovery: searching bioactive compounds in plant extracts. Methods Mol Biol 572:203–218. https://doi.org/10.1007/978-1-60761-244-5_13

    Article  CAS  PubMed  Google Scholar 

  183. Masson J-F (2017) Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sensors 2(1):16–30. https://doi.org/10.1021/acssensors.6b00763

    Article  CAS  PubMed  Google Scholar 

  184. Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249. https://doi.org/10.1021/ac5039863

    Article  CAS  PubMed  Google Scholar 

  185. Luo X, Davis JJ (2013) Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev 42(13):5944–5962. https://doi.org/10.1039/c3cs60077g

    Article  CAS  PubMed  Google Scholar 

  186. Hammond Jules L, Formisano N, Estrela P, Carrara S, Tkac J (2016) Electrochemical biosensors and nanobiosensors. Essays Biochem 60(1):69–80. https://doi.org/10.1042/ebc20150008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ou D, Sun D, Lin X, Liang Z, Zhong Y, Chen Z (2019) A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 via flower-like nanozymes and DNA nanostructures. J Mater Chem B 7(23):3661–3669. https://doi.org/10.1039/c9tb00472f

    Article  CAS  Google Scholar 

  188. Rostamabadi PF, Heydari-Bafrooei E (2019) Impedimetric aptasensing of the breast cancer biomarker HER2 using a glassy carbon electrode modified with gold nanoparticles in a composite consisting of electrochemically reduced graphene oxide and single-walled carbon nanotubes. Microchim Acta 186(8). https://doi.org/10.1007/s00604-019-3619-y

  189. Qureshi A, Gurbuz Y, Niazi JH (2015) Label-free capacitance based aptasensor platform for the detection of HER2/ErbB2 cancer biomarker in serum. Sensors Actuators B Chem 220:1145–1151. https://doi.org/10.1016/j.snb.2015.06.094

    Article  CAS  Google Scholar 

  190. Arya SK, Zhurauski P, Jolly P, Batistuti MR, Mulato M, Estrela P (2018) Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum. Biosens Bioelectron 102:106–112. https://doi.org/10.1016/j.bios.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  191. Zhou N, Su F, Li Z, Yan X, Zhang C, Hu B, He L, Wang M, Zhang Z (2019) Gold nanoparticles conjugated to bimetallic manganese(II) and iron(II) Prussian Blue analogues for aptamer-based impedimetric determination of the human epidermal growth factor receptor-2 and living MCF-7 cells. Microchim Acta 186(2):75. https://doi.org/10.1007/s00604-018-3184-9

    Article  CAS  Google Scholar 

  192. Qureshi A, Gurbuz Y, Niazi JH (2015) Capacitive aptamer–antibody based sandwich assay for the detection of VEGF cancer biomarker in serum. Sensors Actuators B Chem 209:645–651. https://doi.org/10.1016/j.snb.2014.12.040

    Article  CAS  Google Scholar 

  193. Malecka K, Pankratov D, Ferapontova EE (2019) Femtomolar electroanalysis of a breast cancer biomarker HER-2/neu protein in human serum by the cellulase-linked sandwich assay on magnetic beads. Anal Chim Acta 1077:140–149. https://doi.org/10.1016/j.aca.2019.05.052

    Article  CAS  PubMed  Google Scholar 

  194. Chen D, Wang D, Hu X, Long G, Zhang Y, Zhou L (2019) A DNA nanostructured biosensor for electrochemical analysis of HER2 using bioconjugate of GNR@Pd SSs—Apt—HRP. Sensors Actuators B Chem 296. https://doi.org/10.1016/j.snb.2019.126650

  195. Shen C, Zeng K, Luo J, Li X, Yang M, Rasooly A (2017) Self-assembled DNA generated electric current biosensor for HER2 analysis. Anal Chem 89(19):10264–10269. https://doi.org/10.1021/acs.analchem.7b01747

    Article  CAS  PubMed  Google Scholar 

  196. Jarczewska M, Wieczorek J, Malinowska E (2020) Electrochemical Studies on the Binding of Antibody—Aptamer Hybrid Receptor Layers to HAB-one of the possibilities of early detection of cancer disease is the analysis of the presence of protein biomarkers. Herein, we present the studies on the hybrid antibody—aptamer receptor layers for electrochemical detection of HER2 protein that is known as a biomarker of e.g. breast cancer. The application of MB-labelled aptamer did not allow to evidence the interaction with HER2 protein. Moreover, the use of unlabelled aptamer as a capture element and polyclonal antibody as a reporter probe did not show a dependence of current signal change vs HER2 protein concentration as well. On the contrary, the application of monoclonal antibody as a capture probe and aptamer labelled at 3′ end with MB as reporter probe enabled the determination of HER2 within 0.01–10 ng·ml−1 concentration range. The elaborated affinity assay also showed good selectivity towards HER2 biomarker and was used for HER2 determination in spiked serum sample. ER2 Protein. Journal of The Electrochemical Society 167(6):067512. https://doi.org/10.1149/1945-7111/ab80ac

  197. Tabasi A, Noorbakhsh A, Sharifi E (2017) Reduced graphene oxide-chitosan-aptamer interface as new platform for ultrasensitive detection of human epidermal growth factor receptor 2. Biosens Bioelectron 95:117–123. https://doi.org/10.1016/j.bios.2017.04.020

    Article  CAS  PubMed  Google Scholar 

  198. Huang J, Luo X, Lee I, Hu Y, Cui XT, Yun M (2011) Rapid real-time electrical detection of proteins using single conducting polymer nanowire-based microfluidic aptasensor. Biosens Bioelectron 30(1):306–309. https://doi.org/10.1016/j.bios.2011.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Florea A, Ravalli A, Cristea C, Săndulescu R, Marrazza G (2015) An optimized bioassay for Mucin1 detection in serum samples. Electroanalysis 27(7):1594–1601. https://doi.org/10.1002/elan.201400689

    Article  CAS  Google Scholar 

  200. Liu C, Liu X, Qin Y, Deng C, Xiang J (2016) A simple regenerable electrochemical aptasensor for the parallel and continuous detection of biomarkers. RSC Adv 6(63):58469–58476. https://doi.org/10.1039/C6RA09284E

    Article  CAS  Google Scholar 

  201. Deng C, Pi X, Qian P, Chen X, Wu W, Xiang J (2017) High-performance ratiometric electrochemical method based on the combination of signal probe and inner reference probe in one hairpin-structured DNA. Anal Chem 89(1):966–973. https://doi.org/10.1021/acs.analchem.6b04209

    Article  CAS  PubMed  Google Scholar 

  202. Karpik AE, Crulhas BP, Rodrigues CB, Castro GR, Pedrosa VA (2017) Aptamer-based biosensor developed to monitor MUC1 released by prostate cancer cells. Electroanalysis 29(10):2246–2253. https://doi.org/10.1002/elan.201700318

    Article  CAS  Google Scholar 

  203. Gupta P, Bharti A, Kaur N, Singh S, Prabhakar N (2018) An electrochemical aptasensor based on gold nanoparticles and graphene oxide doped poly(3,4-ethylenedioxythiophene) nanocomposite for detection of MUC1. Journal of Electroanalytical Chemistry 813:102–108. https://doi.org/10.1016/j.jelechem.2018.02.014

    Article  CAS  Google Scholar 

  204. Yang S, Zhang F, Liang Q, Wang Z (2018) A three-dimensional graphene-based ratiometric signal amplification aptasensor for MUC1 detection. Biosens Bioelectron 120:85–92. https://doi.org/10.1016/j.bios.2018.08.036

    Article  CAS  PubMed  Google Scholar 

  205. Wang H, Sun J, Lu L, Yang X, Xia J, Zhang F, Wang Z (2020) Competitive electrochemical aptasensor based on a cDNA-ferrocene/MXene probe for detection of breast cancer marker Mucin1. Anal Chim Acta 1094:18–25. https://doi.org/10.1016/j.aca.2019.10.003

    Article  CAS  PubMed  Google Scholar 

  206. Ravalli A, Rivas L, De la Escosura-Muniz A, Pons J, Merkoci A, Marrazza G (2015) A DNA aptasensor for electrochemical detection of vascular endothelial growth factor. J Nanosci Nanotechnol 15 (5):3411–3416. doi:https://doi.org/10.1166/jnn.2015.10037

  207. Lv Z, Wang K, Zhang X (2014) A new electrochemical aptasensor for the analysis of the vascular endothelial growth factor. J Immunoass Immunochem 35(3):233–240. https://doi.org/10.1080/15321819.2013.841194

    Article  CAS  Google Scholar 

  208. Crulhas BP, Karpik AE, Delella FK, Castro GR, Pedrosa VA (2017) Electrochemical aptamer-based biosensor developed to monitor PSA and VEGF released by prostate cancer cells. Anal Bioanal Chem 409(29):6771–6780. https://doi.org/10.1007/s00216-017-0630-1

    Article  CAS  PubMed  Google Scholar 

  209. Cheng W, Ding S, Li Q, Yu T, Yin Y, Ju H, Ren G (2012) A simple electrochemical aptasensor for ultrasensitive protein detection using cyclic target-induced primer extension. Biosens Bioelectron 36(1):12–17. https://doi.org/10.1016/j.bios.2012.03.032

    Article  CAS  PubMed  Google Scholar 

  210. Da H, Liu H, Zheng Y, Yuan R, Chai Y (2018) A highly sensitive VEGF165 photoelectrochemical biosensor fabricated by assembly of aptamer bridged DNA networks. Biosens Bioelectron 101:213–218. https://doi.org/10.1016/j.bios.2017.10.032

    Article  CAS  PubMed  Google Scholar 

  211. Abe K, Hasegawa H, Ikebukuro K (2012) Electrochemical detection of vascular endothelial growth factor by an aptamer-based bound/free separation system. Electrochemistry 80(5):348–352. https://doi.org/10.5796/electrochemistry.80.348

    Article  CAS  Google Scholar 

  212. Feng L, Lyu Z, Offenhäusser A, Mayer D (2016) Electrochemically triggered aptamer immobilization via click reaction for vascular endothelial growth factor detection. Engineering in Life Sciences 16(6):550–559. https://doi.org/10.1002/elsc.201600068

    Article  CAS  Google Scholar 

  213. Shamsipur M, Farzin L, Amouzadeh Tabrizi M, Molaabasi F (2015) Highly sensitive label free electrochemical detection of VGEF165 tumor marker based on “signal off” and “signal on” strategies using an anti-VEGF165 aptamer immobilized BSA-gold nanoclusters/ionic liquid/glassy carbon electrode. Biosens Bioelectron 74:369–375. https://doi.org/10.1016/j.bios.2015.06.079

    Article  CAS  PubMed  Google Scholar 

  214. Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S (2017) Simultaneous determination of CYC and VEGF165 tumor markers based on immobilization of flavin adenine dinucleotide and thionine as probes on reduced graphene oxide-poly(amidoamine)/gold nanocomposite modified dual working screen-printed electrode. Sensors Actuators B Chem 240:1174–1181. https://doi.org/10.1016/j.snb.2016.09.108

    Article  CAS  Google Scholar 

  215. Lee H-S, Kim KS, Kim C-J, Hahn SK, Jo M-H (2009) Electrical detection of VEGFs for cancer diagnoses using anti-vascular endotherial growth factor aptamer-modified Si nanowire FETs. Biosens Bioelectron 24(6):1801–1805. https://doi.org/10.1016/j.bios.2008.08.036

    Article  CAS  PubMed  Google Scholar 

  216. Wang B, Akiba U, Anzai J-i (2017) Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers: a review. Molecules 22(7):1048

    Article  PubMed Central  Google Scholar 

  217. Byon HR, Choi HC (2006) Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. J Am Chem Soc 128(7):2188–2189. https://doi.org/10.1021/ja056897n

    Article  CAS  PubMed  Google Scholar 

  218. Vu C-A, Chen W-Y (2019) Field-effect transistor biosensors for biomedical applications: recent advances and future prospects. Sensors (Basel, Switzerland) 19(19):4214. https://doi.org/10.3390/s19194214

    Article  CAS  Google Scholar 

  219. Vu C-A, Chen W-Y (2020) Predicting future prospects of aptamers in field-effect transistor biosensors. Molecules 25(3):680

    Article  CAS  PubMed Central  Google Scholar 

  220. Chen A, Yang S (2015) Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 71:230–242

    Article  CAS  PubMed  Google Scholar 

  221. Zhou W, Xu F, Li D, Chen Y (2018) Improved detection of HER2 by a quasi-targeted proteomics approach using aptamer-peptide probe and liquid chromatography-tandem mass spectrometry. Clin Chem 64(3):526–535. https://doi.org/10.1373/clinchem.2017.274266

    Article  CAS  PubMed  Google Scholar 

  222. Mei Y-B, Luo S-B, Ye L-Y, Zhang Q, Guo J, Qiu X-J, Xie S-L (2019) Validated UPLC-MS/MS method for quantification of fruquintinib in rat plasma and its application to pharmacokinetic study. Drug design, development and therapy 13:2865–2871. https://doi.org/10.2147/DDDT.S199362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Li C, Zhang M, Zhang Z, Tang J, Zhang B (2019) Microcantilever aptasensor for detecting epithelial tumor marker Mucin 1 and diagnosing human breast carcinoma MCF-7 cells. Sensors Actuators B Chem 297. https://doi.org/10.1016/j.snb.2019.126759

  224. Shamsipur M, Emami M, Farzin L, Saber R (2018) A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. Biosens Bioelectron 103:54–61. https://doi.org/10.1016/j.bios.2017.12.022

    Article  CAS  PubMed  Google Scholar 

  225. Li S, Zheng Y, Liu Y, Geng X, Liu X, Zou L, Wang Q, Yang X, Wang K (2020) Investigation of the interaction between split aptamer and vascular endothelial growth factor 165 using single molecule force spectroscopy. J Mol Recognit 33(5). https://doi.org/10.1002/jmr.2829

  226. Johari-Ahar M, Karami P, Ghanei M, Afkhami A, Bagheri H (2018) Development of a molecularly imprinted polymer tailored on disposable screen-printed electrodes for dual detection of EGFR and VEGF using nano-liposomal amplification strategy. Biosens Bioelectron 107:26–33. https://doi.org/10.1016/j.bios.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  227. Pacheco JG, Rebelo P, Freitas M, Nouws HPA, Delerue-Matos C (2018) Breast cancer biomarker (HER2-ECD) detection using a molecularly imprinted electrochemical sensor. Sensors Actuators B Chem 273:1008–1014. https://doi.org/10.1016/j.snb.2018.06.113

    Article  CAS  Google Scholar 

  228. Pei X, Zhang J, Liu J (2014) Clinical applications of nucleic acid aptamers in cancer. Mol Clin Oncol 2(3):341–348. https://doi.org/10.3892/mco.2014.255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, Quaresmini D, Tucci M, Silvestris F (2018) Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Therapeutic advances in medical oncology 10:1758835918794630–1758835918794630. https://doi.org/10.1177/1758835918794630

    Article  PubMed  PubMed Central  Google Scholar 

  230. Agrawal L, Engel KB, Greytak SR, Moore HM (2018) Understanding preanalytical variables and their effects on clinical biomarkers of oncology and immunotherapy. Semin Cancer Biol 52(Pt 2):26–38. https://doi.org/10.1016/j.semcancer.2017.12.008

    Article  CAS  PubMed  Google Scholar 

  231. Venook AP, Arcila ME, Benson AB 3rd, Berry DA, Camidge DR, Carlson RW, Choueiri TK, Guild V, Kalemkerian GP, Kurzrock R, Lovly CM, McKee AE, Morgan RJ, Olszanski AJ, Redman MW, Stearns V, McClure J, Birkeland ML (2014) NCCN Working Group report: designing clinical trials in the era of multiple biomarkers and targeted therapies. Journal of the National Comprehensive Cancer Network : JNCCN 12(11):1629–1649. https://doi.org/10.6004/jnccn.2014.0161

    Article  PubMed  Google Scholar 

  232. Mazaafrianto DN, Maeki M, Ishida A, Tani H, Tokeshi M (2018) Recent microdevice-based aptamer sensors. Micromachines 9(5):202. https://doi.org/10.3390/mi9050202

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samet Şahin or Mustafa Oguzhan Caglayan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, S., Caglayan, M.O. & Üstündağ, Z. Recent advances in aptamer-based sensors for breast cancer diagnosis: special cases for nanomaterial-based VEGF, HER2, and MUC1 aptasensors. Microchim Acta 187, 549 (2020). https://doi.org/10.1007/s00604-020-04526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04526-x

Keywords

Navigation